Docstrings arguments cleanup (#3229)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 1 year ago committed by GitHub
parent 62916b3b0a
commit bd0f7ecf6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -43,8 +43,8 @@ def create_markdown(py_filepath, module_path, classes, functions):
header_content = f"{header_parts[0]}---{header_parts[1]}---\n\n" header_content = f"{header_parts[0]}---{header_parts[1]}---\n\n"
module_path = module_path.replace('.__init__', '') module_path = module_path.replace('.__init__', '')
md_content = [f"# {class_name}\n---\n:::{module_path}.{class_name}\n<br><br>\n" for class_name in classes] md_content = [f"## {class_name}\n---\n### ::: {module_path}.{class_name}\n<br><br>\n" for class_name in classes]
md_content.extend(f"# {func_name}\n---\n:::{module_path}.{func_name}\n<br><br>\n" for func_name in functions) md_content.extend(f"## {func_name}\n---\n### ::: {module_path}.{func_name}\n<br><br>\n" for func_name in functions)
md_content = header_content + "\n".join(md_content) md_content = header_content + "\n".join(md_content)
os.makedirs(os.path.dirname(md_filepath), exist_ok=True) os.makedirs(os.path.dirname(md_filepath), exist_ok=True)

@ -3,42 +3,42 @@ description: Access Ultralytics HUB, manage API keys, train models, and export i
keywords: Ultralytics, YOLO, Docs HUB, API, login, logout, reset model, export model, check dataset, HUBDatasetStats, YOLO training, YOLO model keywords: Ultralytics, YOLO, Docs HUB, API, login, logout, reset model, export model, check dataset, HUBDatasetStats, YOLO training, YOLO model
--- ---
# login ## login
--- ---
:::ultralytics.hub.login ### ::: ultralytics.hub.login
<br><br> <br><br>
# logout ## logout
--- ---
:::ultralytics.hub.logout ### ::: ultralytics.hub.logout
<br><br> <br><br>
# start ## start
--- ---
:::ultralytics.hub.start ### ::: ultralytics.hub.start
<br><br> <br><br>
# reset_model ## reset_model
--- ---
:::ultralytics.hub.reset_model ### ::: ultralytics.hub.reset_model
<br><br> <br><br>
# export_fmts_hub ## export_fmts_hub
--- ---
:::ultralytics.hub.export_fmts_hub ### ::: ultralytics.hub.export_fmts_hub
<br><br> <br><br>
# export_model ## export_model
--- ---
:::ultralytics.hub.export_model ### ::: ultralytics.hub.export_model
<br><br> <br><br>
# get_export ## get_export
--- ---
:::ultralytics.hub.get_export ### ::: ultralytics.hub.get_export
<br><br> <br><br>
# check_dataset ## check_dataset
--- ---
:::ultralytics.hub.check_dataset ### ::: ultralytics.hub.check_dataset
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn how to use Ultralytics hub authentication in your projects wi
keywords: Ultralytics, ultralytics hub, api keys, authentication, collab accounts, requests, hub management, monitoring keywords: Ultralytics, ultralytics hub, api keys, authentication, collab accounts, requests, hub management, monitoring
--- ---
# Auth ## Auth
--- ---
:::ultralytics.hub.auth.Auth ### ::: ultralytics.hub.auth.Auth
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Accelerate your AI development with the Ultralytics HUB Training Se
keywords: YOLOv5, object detection, HUBTrainingSession, custom models, Ultralytics Docs keywords: YOLOv5, object detection, HUBTrainingSession, custom models, Ultralytics Docs
--- ---
# HUBTrainingSession ## HUBTrainingSession
--- ---
:::ultralytics.hub.session.HUBTrainingSession ### ::: ultralytics.hub.session.HUBTrainingSession
<br><br> <br><br>

@ -3,22 +3,22 @@ description: Explore Ultralytics events, including 'request_with_credentials' an
keywords: Ultralytics, Hub Utils, API Documentation, Python, requests_with_progress, Events, classes, usage, examples keywords: Ultralytics, Hub Utils, API Documentation, Python, requests_with_progress, Events, classes, usage, examples
--- ---
# Events ## Events
--- ---
:::ultralytics.hub.utils.Events ### ::: ultralytics.hub.utils.Events
<br><br> <br><br>
# request_with_credentials ## request_with_credentials
--- ---
:::ultralytics.hub.utils.request_with_credentials ### ::: ultralytics.hub.utils.request_with_credentials
<br><br> <br><br>
# requests_with_progress ## requests_with_progress
--- ---
:::ultralytics.hub.utils.requests_with_progress ### ::: ultralytics.hub.utils.requests_with_progress
<br><br> <br><br>
# smart_request ## smart_request
--- ---
:::ultralytics.hub.utils.smart_request ### ::: ultralytics.hub.utils.smart_request
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Ensure class names match filenames for easy imports. Use AutoBacken
keywords: AutoBackend, ultralytics, nn, autobackend, check class names, neural network keywords: AutoBackend, ultralytics, nn, autobackend, check class names, neural network
--- ---
# AutoBackend ## AutoBackend
--- ---
:::ultralytics.nn.autobackend.AutoBackend ### ::: ultralytics.nn.autobackend.AutoBackend
<br><br> <br><br>
# check_class_names ## check_class_names
--- ---
:::ultralytics.nn.autobackend.check_class_names ### ::: ultralytics.nn.autobackend.check_class_names
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Detect 80+ object categories with bounding box coordinates and clas
keywords: Ultralytics, YOLO, docs, autoshape, detections, object detection, customized shapes, bounding boxes, computer vision keywords: Ultralytics, YOLO, docs, autoshape, detections, object detection, customized shapes, bounding boxes, computer vision
--- ---
# AutoShape ## AutoShape
--- ---
:::ultralytics.nn.autoshape.AutoShape ### ::: ultralytics.nn.autoshape.AutoShape
<br><br> <br><br>
# Detections ## Detections
--- ---
:::ultralytics.nn.autoshape.Detections ### ::: ultralytics.nn.autoshape.Detections
<br><br> <br><br>

@ -3,87 +3,87 @@ description: Explore ultralytics.nn.modules.block to build powerful YOLO object
keywords: Ultralytics, NN Modules, Blocks, DFL, HGStem, SPP, C1, C2f, C3x, C3TR, GhostBottleneck, BottleneckCSP, Computer Vision keywords: Ultralytics, NN Modules, Blocks, DFL, HGStem, SPP, C1, C2f, C3x, C3TR, GhostBottleneck, BottleneckCSP, Computer Vision
--- ---
# DFL ## DFL
--- ---
:::ultralytics.nn.modules.block.DFL ### ::: ultralytics.nn.modules.block.DFL
<br><br> <br><br>
# Proto ## Proto
--- ---
:::ultralytics.nn.modules.block.Proto ### ::: ultralytics.nn.modules.block.Proto
<br><br> <br><br>
# HGStem ## HGStem
--- ---
:::ultralytics.nn.modules.block.HGStem ### ::: ultralytics.nn.modules.block.HGStem
<br><br> <br><br>
# HGBlock ## HGBlock
--- ---
:::ultralytics.nn.modules.block.HGBlock ### ::: ultralytics.nn.modules.block.HGBlock
<br><br> <br><br>
# SPP ## SPP
--- ---
:::ultralytics.nn.modules.block.SPP ### ::: ultralytics.nn.modules.block.SPP
<br><br> <br><br>
# SPPF ## SPPF
--- ---
:::ultralytics.nn.modules.block.SPPF ### ::: ultralytics.nn.modules.block.SPPF
<br><br> <br><br>
# C1 ## C1
--- ---
:::ultralytics.nn.modules.block.C1 ### ::: ultralytics.nn.modules.block.C1
<br><br> <br><br>
# C2 ## C2
--- ---
:::ultralytics.nn.modules.block.C2 ### ::: ultralytics.nn.modules.block.C2
<br><br> <br><br>
# C2f ## C2f
--- ---
:::ultralytics.nn.modules.block.C2f ### ::: ultralytics.nn.modules.block.C2f
<br><br> <br><br>
# C3 ## C3
--- ---
:::ultralytics.nn.modules.block.C3 ### ::: ultralytics.nn.modules.block.C3
<br><br> <br><br>
# C3x ## C3x
--- ---
:::ultralytics.nn.modules.block.C3x ### ::: ultralytics.nn.modules.block.C3x
<br><br> <br><br>
# RepC3 ## RepC3
--- ---
:::ultralytics.nn.modules.block.RepC3 ### ::: ultralytics.nn.modules.block.RepC3
<br><br> <br><br>
# C3TR ## C3TR
--- ---
:::ultralytics.nn.modules.block.C3TR ### ::: ultralytics.nn.modules.block.C3TR
<br><br> <br><br>
# C3Ghost ## C3Ghost
--- ---
:::ultralytics.nn.modules.block.C3Ghost ### ::: ultralytics.nn.modules.block.C3Ghost
<br><br> <br><br>
# GhostBottleneck ## GhostBottleneck
--- ---
:::ultralytics.nn.modules.block.GhostBottleneck ### ::: ultralytics.nn.modules.block.GhostBottleneck
<br><br> <br><br>
# Bottleneck ## Bottleneck
--- ---
:::ultralytics.nn.modules.block.Bottleneck ### ::: ultralytics.nn.modules.block.Bottleneck
<br><br> <br><br>
# BottleneckCSP ## BottleneckCSP
--- ---
:::ultralytics.nn.modules.block.BottleneckCSP ### ::: ultralytics.nn.modules.block.BottleneckCSP
<br><br> <br><br>

@ -3,72 +3,72 @@ description: Explore convolutional neural network modules & techniques such as L
keywords: Ultralytics, Convolutional Neural Network, Conv2, DWConv, ConvTranspose, GhostConv, ChannelAttention, CBAM, autopad keywords: Ultralytics, Convolutional Neural Network, Conv2, DWConv, ConvTranspose, GhostConv, ChannelAttention, CBAM, autopad
--- ---
# Conv ## Conv
--- ---
:::ultralytics.nn.modules.conv.Conv ### ::: ultralytics.nn.modules.conv.Conv
<br><br> <br><br>
# Conv2 ## Conv2
--- ---
:::ultralytics.nn.modules.conv.Conv2 ### ::: ultralytics.nn.modules.conv.Conv2
<br><br> <br><br>
# LightConv ## LightConv
--- ---
:::ultralytics.nn.modules.conv.LightConv ### ::: ultralytics.nn.modules.conv.LightConv
<br><br> <br><br>
# DWConv ## DWConv
--- ---
:::ultralytics.nn.modules.conv.DWConv ### ::: ultralytics.nn.modules.conv.DWConv
<br><br> <br><br>
# DWConvTranspose2d ## DWConvTranspose2d
--- ---
:::ultralytics.nn.modules.conv.DWConvTranspose2d ### ::: ultralytics.nn.modules.conv.DWConvTranspose2d
<br><br> <br><br>
# ConvTranspose ## ConvTranspose
--- ---
:::ultralytics.nn.modules.conv.ConvTranspose ### ::: ultralytics.nn.modules.conv.ConvTranspose
<br><br> <br><br>
# Focus ## Focus
--- ---
:::ultralytics.nn.modules.conv.Focus ### ::: ultralytics.nn.modules.conv.Focus
<br><br> <br><br>
# GhostConv ## GhostConv
--- ---
:::ultralytics.nn.modules.conv.GhostConv ### ::: ultralytics.nn.modules.conv.GhostConv
<br><br> <br><br>
# RepConv ## RepConv
--- ---
:::ultralytics.nn.modules.conv.RepConv ### ::: ultralytics.nn.modules.conv.RepConv
<br><br> <br><br>
# ChannelAttention ## ChannelAttention
--- ---
:::ultralytics.nn.modules.conv.ChannelAttention ### ::: ultralytics.nn.modules.conv.ChannelAttention
<br><br> <br><br>
# SpatialAttention ## SpatialAttention
--- ---
:::ultralytics.nn.modules.conv.SpatialAttention ### ::: ultralytics.nn.modules.conv.SpatialAttention
<br><br> <br><br>
# CBAM ## CBAM
--- ---
:::ultralytics.nn.modules.conv.CBAM ### ::: ultralytics.nn.modules.conv.CBAM
<br><br> <br><br>
# Concat ## Concat
--- ---
:::ultralytics.nn.modules.conv.Concat ### ::: ultralytics.nn.modules.conv.Concat
<br><br> <br><br>
# autopad ## autopad
--- ---
:::ultralytics.nn.modules.conv.autopad ### ::: ultralytics.nn.modules.conv.autopad
<br><br> <br><br>

@ -3,27 +3,27 @@ description: 'Learn about Ultralytics YOLO modules: Segment, Classify, and RTDET
keywords: Ultralytics, YOLO, object detection, pose estimation, RTDETRDecoder, modules, classes, documentation keywords: Ultralytics, YOLO, object detection, pose estimation, RTDETRDecoder, modules, classes, documentation
--- ---
# Detect ## Detect
--- ---
:::ultralytics.nn.modules.head.Detect ### ::: ultralytics.nn.modules.head.Detect
<br><br> <br><br>
# Segment ## Segment
--- ---
:::ultralytics.nn.modules.head.Segment ### ::: ultralytics.nn.modules.head.Segment
<br><br> <br><br>
# Pose ## Pose
--- ---
:::ultralytics.nn.modules.head.Pose ### ::: ultralytics.nn.modules.head.Pose
<br><br> <br><br>
# Classify ## Classify
--- ---
:::ultralytics.nn.modules.head.Classify ### ::: ultralytics.nn.modules.head.Classify
<br><br> <br><br>
# RTDETRDecoder ## RTDETRDecoder
--- ---
:::ultralytics.nn.modules.head.RTDETRDecoder ### ::: ultralytics.nn.modules.head.RTDETRDecoder
<br><br> <br><br>

@ -3,52 +3,52 @@ description: Explore the Ultralytics nn modules pages on Transformer and MLP blo
keywords: Ultralytics, NN Modules, TransformerEncoderLayer, TransformerLayer, MLPBlock, LayerNorm2d, DeformableTransformerDecoderLayer, examples, code snippets, tutorials keywords: Ultralytics, NN Modules, TransformerEncoderLayer, TransformerLayer, MLPBlock, LayerNorm2d, DeformableTransformerDecoderLayer, examples, code snippets, tutorials
--- ---
# TransformerEncoderLayer ## TransformerEncoderLayer
--- ---
:::ultralytics.nn.modules.transformer.TransformerEncoderLayer ### ::: ultralytics.nn.modules.transformer.TransformerEncoderLayer
<br><br> <br><br>
# AIFI ## AIFI
--- ---
:::ultralytics.nn.modules.transformer.AIFI ### ::: ultralytics.nn.modules.transformer.AIFI
<br><br> <br><br>
# TransformerLayer ## TransformerLayer
--- ---
:::ultralytics.nn.modules.transformer.TransformerLayer ### ::: ultralytics.nn.modules.transformer.TransformerLayer
<br><br> <br><br>
# TransformerBlock ## TransformerBlock
--- ---
:::ultralytics.nn.modules.transformer.TransformerBlock ### ::: ultralytics.nn.modules.transformer.TransformerBlock
<br><br> <br><br>
# MLPBlock ## MLPBlock
--- ---
:::ultralytics.nn.modules.transformer.MLPBlock ### ::: ultralytics.nn.modules.transformer.MLPBlock
<br><br> <br><br>
# MLP ## MLP
--- ---
:::ultralytics.nn.modules.transformer.MLP ### ::: ultralytics.nn.modules.transformer.MLP
<br><br> <br><br>
# LayerNorm2d ## LayerNorm2d
--- ---
:::ultralytics.nn.modules.transformer.LayerNorm2d ### ::: ultralytics.nn.modules.transformer.LayerNorm2d
<br><br> <br><br>
# MSDeformAttn ## MSDeformAttn
--- ---
:::ultralytics.nn.modules.transformer.MSDeformAttn ### ::: ultralytics.nn.modules.transformer.MSDeformAttn
<br><br> <br><br>
# DeformableTransformerDecoderLayer ## DeformableTransformerDecoderLayer
--- ---
:::ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer ### ::: ultralytics.nn.modules.transformer.DeformableTransformerDecoderLayer
<br><br> <br><br>
# DeformableTransformerDecoder ## DeformableTransformerDecoder
--- ---
:::ultralytics.nn.modules.transformer.DeformableTransformerDecoder ### ::: ultralytics.nn.modules.transformer.DeformableTransformerDecoder
<br><br> <br><br>

@ -3,27 +3,27 @@ description: 'Learn about Ultralytics NN modules: get_clones, linear_init_, and
keywords: Ultralytics, NN Utils, Docs, PyTorch, bias initialization, linear initialization, multi-scale deformable attention keywords: Ultralytics, NN Utils, Docs, PyTorch, bias initialization, linear initialization, multi-scale deformable attention
--- ---
# _get_clones ## _get_clones
--- ---
:::ultralytics.nn.modules.utils._get_clones ### ::: ultralytics.nn.modules.utils._get_clones
<br><br> <br><br>
# bias_init_with_prob ## bias_init_with_prob
--- ---
:::ultralytics.nn.modules.utils.bias_init_with_prob ### ::: ultralytics.nn.modules.utils.bias_init_with_prob
<br><br> <br><br>
# linear_init_ ## linear_init_
--- ---
:::ultralytics.nn.modules.utils.linear_init_ ### ::: ultralytics.nn.modules.utils.linear_init_
<br><br> <br><br>
# inverse_sigmoid ## inverse_sigmoid
--- ---
:::ultralytics.nn.modules.utils.inverse_sigmoid ### ::: ultralytics.nn.modules.utils.inverse_sigmoid
<br><br> <br><br>
# multi_scale_deformable_attn_pytorch ## multi_scale_deformable_attn_pytorch
--- ---
:::ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch ### ::: ultralytics.nn.modules.utils.multi_scale_deformable_attn_pytorch
<br><br> <br><br>

@ -3,72 +3,72 @@ description: Learn how to work with Ultralytics YOLO Detection, Segmentation & C
keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch
--- ---
# BaseModel ## BaseModel
--- ---
:::ultralytics.nn.tasks.BaseModel ### ::: ultralytics.nn.tasks.BaseModel
<br><br> <br><br>
# DetectionModel ## DetectionModel
--- ---
:::ultralytics.nn.tasks.DetectionModel ### ::: ultralytics.nn.tasks.DetectionModel
<br><br> <br><br>
# SegmentationModel ## SegmentationModel
--- ---
:::ultralytics.nn.tasks.SegmentationModel ### ::: ultralytics.nn.tasks.SegmentationModel
<br><br> <br><br>
# PoseModel ## PoseModel
--- ---
:::ultralytics.nn.tasks.PoseModel ### ::: ultralytics.nn.tasks.PoseModel
<br><br> <br><br>
# ClassificationModel ## ClassificationModel
--- ---
:::ultralytics.nn.tasks.ClassificationModel ### ::: ultralytics.nn.tasks.ClassificationModel
<br><br> <br><br>
# RTDETRDetectionModel ## RTDETRDetectionModel
--- ---
:::ultralytics.nn.tasks.RTDETRDetectionModel ### ::: ultralytics.nn.tasks.RTDETRDetectionModel
<br><br> <br><br>
# Ensemble ## Ensemble
--- ---
:::ultralytics.nn.tasks.Ensemble ### ::: ultralytics.nn.tasks.Ensemble
<br><br> <br><br>
# torch_safe_load ## torch_safe_load
--- ---
:::ultralytics.nn.tasks.torch_safe_load ### ::: ultralytics.nn.tasks.torch_safe_load
<br><br> <br><br>
# attempt_load_weights ## attempt_load_weights
--- ---
:::ultralytics.nn.tasks.attempt_load_weights ### ::: ultralytics.nn.tasks.attempt_load_weights
<br><br> <br><br>
# attempt_load_one_weight ## attempt_load_one_weight
--- ---
:::ultralytics.nn.tasks.attempt_load_one_weight ### ::: ultralytics.nn.tasks.attempt_load_one_weight
<br><br> <br><br>
# parse_model ## parse_model
--- ---
:::ultralytics.nn.tasks.parse_model ### ::: ultralytics.nn.tasks.parse_model
<br><br> <br><br>
# yaml_model_load ## yaml_model_load
--- ---
:::ultralytics.nn.tasks.yaml_model_load ### ::: ultralytics.nn.tasks.yaml_model_load
<br><br> <br><br>
# guess_model_scale ## guess_model_scale
--- ---
:::ultralytics.nn.tasks.guess_model_scale ### ::: ultralytics.nn.tasks.guess_model_scale
<br><br> <br><br>
# guess_model_task ## guess_model_task
--- ---
:::ultralytics.nn.tasks.guess_model_task ### ::: ultralytics.nn.tasks.guess_model_task
<br><br> <br><br>

@ -3,17 +3,17 @@ description: Learn how to register custom event-tracking and track predictions w
keywords: Ultralytics YOLO, tracker registration, on_predict_start, object detection keywords: Ultralytics YOLO, tracker registration, on_predict_start, object detection
--- ---
# on_predict_start ## on_predict_start
--- ---
:::ultralytics.tracker.track.on_predict_start ### ::: ultralytics.tracker.track.on_predict_start
<br><br> <br><br>
# on_predict_postprocess_end ## on_predict_postprocess_end
--- ---
:::ultralytics.tracker.track.on_predict_postprocess_end ### ::: ultralytics.tracker.track.on_predict_postprocess_end
<br><br> <br><br>
# register_tracker ## register_tracker
--- ---
:::ultralytics.tracker.track.register_tracker ### ::: ultralytics.tracker.track.register_tracker
<br><br> <br><br>

@ -3,12 +3,12 @@ description: 'TrackState: A comprehensive guide to Ultralytics tracker''s BaseTr
keywords: object detection, object tracking, Ultralytics YOLO, TrackState, workflow improvement keywords: object detection, object tracking, Ultralytics YOLO, TrackState, workflow improvement
--- ---
# TrackState ## TrackState
--- ---
:::ultralytics.tracker.trackers.basetrack.TrackState ### ::: ultralytics.tracker.trackers.basetrack.TrackState
<br><br> <br><br>
# BaseTrack ## BaseTrack
--- ---
:::ultralytics.tracker.trackers.basetrack.BaseTrack ### ::: ultralytics.tracker.trackers.basetrack.BaseTrack
<br><br> <br><br>

@ -3,12 +3,12 @@ description: '"Optimize tracking with Ultralytics BOTrack. Easily sort and track
keywords: BOTrack, Ultralytics YOLO Docs, features, usage keywords: BOTrack, Ultralytics YOLO Docs, features, usage
--- ---
# BOTrack ## BOTrack
--- ---
:::ultralytics.tracker.trackers.bot_sort.BOTrack ### ::: ultralytics.tracker.trackers.bot_sort.BOTrack
<br><br> <br><br>
# BOTSORT ## BOTSORT
--- ---
:::ultralytics.tracker.trackers.bot_sort.BOTSORT ### ::: ultralytics.tracker.trackers.bot_sort.BOTSORT
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Learn how to track ByteAI model sizes and tips for model optimizati
keywords: Byte Tracker, Ultralytics STrack, application monitoring, bytes sent, bytes received, code examples, setup instructions keywords: Byte Tracker, Ultralytics STrack, application monitoring, bytes sent, bytes received, code examples, setup instructions
--- ---
# STrack ## STrack
--- ---
:::ultralytics.tracker.trackers.byte_tracker.STrack ### ::: ultralytics.tracker.trackers.byte_tracker.STrack
<br><br> <br><br>
# BYTETracker ## BYTETracker
--- ---
:::ultralytics.tracker.trackers.byte_tracker.BYTETracker ### ::: ultralytics.tracker.trackers.byte_tracker.BYTETracker
<br><br> <br><br>

@ -3,7 +3,7 @@ description: '"Track Google Marketing Campaigns in GMC with Ultralytics Tracker.
keywords: Ultralytics, YOLO, object detection, tracker, optimization, models, documentation keywords: Ultralytics, YOLO, object detection, tracker, optimization, models, documentation
--- ---
# GMC ## GMC
--- ---
:::ultralytics.tracker.utils.gmc.GMC ### ::: ultralytics.tracker.utils.gmc.GMC
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Improve object tracking with KalmanFilterXYAH in Ultralytics YOLO -
keywords: KalmanFilterXYAH, Ultralytics Docs, Kalman filter algorithm, object tracking, computer vision, YOLO keywords: KalmanFilterXYAH, Ultralytics Docs, Kalman filter algorithm, object tracking, computer vision, YOLO
--- ---
# KalmanFilterXYAH ## KalmanFilterXYAH
--- ---
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYAH ### ::: ultralytics.tracker.utils.kalman_filter.KalmanFilterXYAH
<br><br> <br><br>
# KalmanFilterXYWH ## KalmanFilterXYWH
--- ---
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYWH ### ::: ultralytics.tracker.utils.kalman_filter.KalmanFilterXYWH
<br><br> <br><br>

@ -3,62 +3,62 @@ description: Learn how to match and fuse object detections for accurate target t
keywords: Ultralytics, multi-object tracking, object tracking, detection, recognition, matching, indices, iou distance, gate cost matrix, fuse iou, bbox ious keywords: Ultralytics, multi-object tracking, object tracking, detection, recognition, matching, indices, iou distance, gate cost matrix, fuse iou, bbox ious
--- ---
# merge_matches ## merge_matches
--- ---
:::ultralytics.tracker.utils.matching.merge_matches ### ::: ultralytics.tracker.utils.matching.merge_matches
<br><br> <br><br>
# _indices_to_matches ## _indices_to_matches
--- ---
:::ultralytics.tracker.utils.matching._indices_to_matches ### ::: ultralytics.tracker.utils.matching._indices_to_matches
<br><br> <br><br>
# linear_assignment ## linear_assignment
--- ---
:::ultralytics.tracker.utils.matching.linear_assignment ### ::: ultralytics.tracker.utils.matching.linear_assignment
<br><br> <br><br>
# ious ## ious
--- ---
:::ultralytics.tracker.utils.matching.ious ### ::: ultralytics.tracker.utils.matching.ious
<br><br> <br><br>
# iou_distance ## iou_distance
--- ---
:::ultralytics.tracker.utils.matching.iou_distance ### ::: ultralytics.tracker.utils.matching.iou_distance
<br><br> <br><br>
# v_iou_distance ## v_iou_distance
--- ---
:::ultralytics.tracker.utils.matching.v_iou_distance ### ::: ultralytics.tracker.utils.matching.v_iou_distance
<br><br> <br><br>
# embedding_distance ## embedding_distance
--- ---
:::ultralytics.tracker.utils.matching.embedding_distance ### ::: ultralytics.tracker.utils.matching.embedding_distance
<br><br> <br><br>
# gate_cost_matrix ## gate_cost_matrix
--- ---
:::ultralytics.tracker.utils.matching.gate_cost_matrix ### ::: ultralytics.tracker.utils.matching.gate_cost_matrix
<br><br> <br><br>
# fuse_motion ## fuse_motion
--- ---
:::ultralytics.tracker.utils.matching.fuse_motion ### ::: ultralytics.tracker.utils.matching.fuse_motion
<br><br> <br><br>
# fuse_iou ## fuse_iou
--- ---
:::ultralytics.tracker.utils.matching.fuse_iou ### ::: ultralytics.tracker.utils.matching.fuse_iou
<br><br> <br><br>
# fuse_score ## fuse_score
--- ---
:::ultralytics.tracker.utils.matching.fuse_score ### ::: ultralytics.tracker.utils.matching.fuse_score
<br><br> <br><br>
# bbox_ious ## bbox_ious
--- ---
:::ultralytics.tracker.utils.matching.bbox_ious ### ::: ultralytics.tracker.utils.matching.bbox_ious
<br><br> <br><br>

@ -3,47 +3,47 @@ description: Explore Ultralytics YOLO's configuration functions and tools. Handl
keywords: Ultralytics, YOLO, configuration, cfg2dict, get_cfg, handle_deprecation, check_cfg_mismatch, merge_equals_args, handle_yolo_hub, handle_yolo_settings, entrypoint, copy_default_cfg keywords: Ultralytics, YOLO, configuration, cfg2dict, get_cfg, handle_deprecation, check_cfg_mismatch, merge_equals_args, handle_yolo_hub, handle_yolo_settings, entrypoint, copy_default_cfg
--- ---
# cfg2dict ## cfg2dict
--- ---
:::ultralytics.yolo.cfg.cfg2dict ### ::: ultralytics.yolo.cfg.cfg2dict
<br><br> <br><br>
# get_cfg ## get_cfg
--- ---
:::ultralytics.yolo.cfg.get_cfg ### ::: ultralytics.yolo.cfg.get_cfg
<br><br> <br><br>
# _handle_deprecation ## _handle_deprecation
--- ---
:::ultralytics.yolo.cfg._handle_deprecation ### ::: ultralytics.yolo.cfg._handle_deprecation
<br><br> <br><br>
# check_cfg_mismatch ## check_cfg_mismatch
--- ---
:::ultralytics.yolo.cfg.check_cfg_mismatch ### ::: ultralytics.yolo.cfg.check_cfg_mismatch
<br><br> <br><br>
# merge_equals_args ## merge_equals_args
--- ---
:::ultralytics.yolo.cfg.merge_equals_args ### ::: ultralytics.yolo.cfg.merge_equals_args
<br><br> <br><br>
# handle_yolo_hub ## handle_yolo_hub
--- ---
:::ultralytics.yolo.cfg.handle_yolo_hub ### ::: ultralytics.yolo.cfg.handle_yolo_hub
<br><br> <br><br>
# handle_yolo_settings ## handle_yolo_settings
--- ---
:::ultralytics.yolo.cfg.handle_yolo_settings ### ::: ultralytics.yolo.cfg.handle_yolo_settings
<br><br> <br><br>
# entrypoint ## entrypoint
--- ---
:::ultralytics.yolo.cfg.entrypoint ### ::: ultralytics.yolo.cfg.entrypoint
<br><br> <br><br>
# copy_default_cfg ## copy_default_cfg
--- ---
:::ultralytics.yolo.cfg.copy_default_cfg ### ::: ultralytics.yolo.cfg.copy_default_cfg
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn how to use auto_annotate in Ultralytics YOLO to generate anno
keywords: Ultralytics YOLO, Auto Annotator, AI, image annotation, object detection, labelling, tool keywords: Ultralytics YOLO, Auto Annotator, AI, image annotation, object detection, labelling, tool
--- ---
# auto_annotate ## auto_annotate
--- ---
:::ultralytics.yolo.data.annotator.auto_annotate ### ::: ultralytics.yolo.data.annotator.auto_annotate
<br><br> <br><br>

@ -3,97 +3,97 @@ description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp,
keywords: YOLO, data augmentation, transforms, BaseTransform, MixUp, RandomHSV, Albumentations, ToTensor, classify_transforms, classify_albumentations keywords: YOLO, data augmentation, transforms, BaseTransform, MixUp, RandomHSV, Albumentations, ToTensor, classify_transforms, classify_albumentations
--- ---
# BaseTransform ## BaseTransform
--- ---
:::ultralytics.yolo.data.augment.BaseTransform ### ::: ultralytics.yolo.data.augment.BaseTransform
<br><br> <br><br>
# Compose ## Compose
--- ---
:::ultralytics.yolo.data.augment.Compose ### ::: ultralytics.yolo.data.augment.Compose
<br><br> <br><br>
# BaseMixTransform ## BaseMixTransform
--- ---
:::ultralytics.yolo.data.augment.BaseMixTransform ### ::: ultralytics.yolo.data.augment.BaseMixTransform
<br><br> <br><br>
# Mosaic ## Mosaic
--- ---
:::ultralytics.yolo.data.augment.Mosaic ### ::: ultralytics.yolo.data.augment.Mosaic
<br><br> <br><br>
# MixUp ## MixUp
--- ---
:::ultralytics.yolo.data.augment.MixUp ### ::: ultralytics.yolo.data.augment.MixUp
<br><br> <br><br>
# RandomPerspective ## RandomPerspective
--- ---
:::ultralytics.yolo.data.augment.RandomPerspective ### ::: ultralytics.yolo.data.augment.RandomPerspective
<br><br> <br><br>
# RandomHSV ## RandomHSV
--- ---
:::ultralytics.yolo.data.augment.RandomHSV ### ::: ultralytics.yolo.data.augment.RandomHSV
<br><br> <br><br>
# RandomFlip ## RandomFlip
--- ---
:::ultralytics.yolo.data.augment.RandomFlip ### ::: ultralytics.yolo.data.augment.RandomFlip
<br><br> <br><br>
# LetterBox ## LetterBox
--- ---
:::ultralytics.yolo.data.augment.LetterBox ### ::: ultralytics.yolo.data.augment.LetterBox
<br><br> <br><br>
# CopyPaste ## CopyPaste
--- ---
:::ultralytics.yolo.data.augment.CopyPaste ### ::: ultralytics.yolo.data.augment.CopyPaste
<br><br> <br><br>
# Albumentations ## Albumentations
--- ---
:::ultralytics.yolo.data.augment.Albumentations ### ::: ultralytics.yolo.data.augment.Albumentations
<br><br> <br><br>
# Format ## Format
--- ---
:::ultralytics.yolo.data.augment.Format ### ::: ultralytics.yolo.data.augment.Format
<br><br> <br><br>
# ClassifyLetterBox ## ClassifyLetterBox
--- ---
:::ultralytics.yolo.data.augment.ClassifyLetterBox ### ::: ultralytics.yolo.data.augment.ClassifyLetterBox
<br><br> <br><br>
# CenterCrop ## CenterCrop
--- ---
:::ultralytics.yolo.data.augment.CenterCrop ### ::: ultralytics.yolo.data.augment.CenterCrop
<br><br> <br><br>
# ToTensor ## ToTensor
--- ---
:::ultralytics.yolo.data.augment.ToTensor ### ::: ultralytics.yolo.data.augment.ToTensor
<br><br> <br><br>
# v8_transforms ## v8_transforms
--- ---
:::ultralytics.yolo.data.augment.v8_transforms ### ::: ultralytics.yolo.data.augment.v8_transforms
<br><br> <br><br>
# classify_transforms ## classify_transforms
--- ---
:::ultralytics.yolo.data.augment.classify_transforms ### ::: ultralytics.yolo.data.augment.classify_transforms
<br><br> <br><br>
# hsv2colorjitter ## hsv2colorjitter
--- ---
:::ultralytics.yolo.data.augment.hsv2colorjitter ### ::: ultralytics.yolo.data.augment.hsv2colorjitter
<br><br> <br><br>
# classify_albumentations ## classify_albumentations
--- ---
:::ultralytics.yolo.data.augment.classify_albumentations ### ::: ultralytics.yolo.data.augment.classify_albumentations
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn about BaseDataset in Ultralytics YOLO, a flexible dataset cla
keywords: BaseDataset, Ultralytics YOLO, object detection, real-world applications, documentation keywords: BaseDataset, Ultralytics YOLO, object detection, real-world applications, documentation
--- ---
# BaseDataset ## BaseDataset
--- ---
:::ultralytics.yolo.data.base.BaseDataset ### ::: ultralytics.yolo.data.base.BaseDataset
<br><br> <br><br>

@ -3,37 +3,37 @@ description: Maximize YOLO performance with Ultralytics' InfiniteDataLoader, see
keywords: Ultralytics, YOLO, object detection, data loading, build dataloader, load inference source keywords: Ultralytics, YOLO, object detection, data loading, build dataloader, load inference source
--- ---
# InfiniteDataLoader ## InfiniteDataLoader
--- ---
:::ultralytics.yolo.data.build.InfiniteDataLoader ### ::: ultralytics.yolo.data.build.InfiniteDataLoader
<br><br> <br><br>
# _RepeatSampler ## _RepeatSampler
--- ---
:::ultralytics.yolo.data.build._RepeatSampler ### ::: ultralytics.yolo.data.build._RepeatSampler
<br><br> <br><br>
# seed_worker ## seed_worker
--- ---
:::ultralytics.yolo.data.build.seed_worker ### ::: ultralytics.yolo.data.build.seed_worker
<br><br> <br><br>
# build_yolo_dataset ## build_yolo_dataset
--- ---
:::ultralytics.yolo.data.build.build_yolo_dataset ### ::: ultralytics.yolo.data.build.build_yolo_dataset
<br><br> <br><br>
# build_dataloader ## build_dataloader
--- ---
:::ultralytics.yolo.data.build.build_dataloader ### ::: ultralytics.yolo.data.build.build_dataloader
<br><br> <br><br>
# check_source ## check_source
--- ---
:::ultralytics.yolo.data.build.check_source ### ::: ultralytics.yolo.data.build.check_source
<br><br> <br><br>
# load_inference_source ## load_inference_source
--- ---
:::ultralytics.yolo.data.build.load_inference_source ### ::: ultralytics.yolo.data.build.load_inference_source
<br><br> <br><br>

@ -3,32 +3,32 @@ description: Convert COCO-91 to COCO-80 class, RLE to polygon, and merge multi-s
keywords: Ultralytics, YOLO, converter, COCO91, COCO80, rle2polygon, merge_multi_segment, annotations keywords: Ultralytics, YOLO, converter, COCO91, COCO80, rle2polygon, merge_multi_segment, annotations
--- ---
# coco91_to_coco80_class ## coco91_to_coco80_class
--- ---
:::ultralytics.yolo.data.converter.coco91_to_coco80_class ### ::: ultralytics.yolo.data.converter.coco91_to_coco80_class
<br><br> <br><br>
# convert_coco ## convert_coco
--- ---
:::ultralytics.yolo.data.converter.convert_coco ### ::: ultralytics.yolo.data.converter.convert_coco
<br><br> <br><br>
# rle2polygon ## rle2polygon
--- ---
:::ultralytics.yolo.data.converter.rle2polygon ### ::: ultralytics.yolo.data.converter.rle2polygon
<br><br> <br><br>
# min_index ## min_index
--- ---
:::ultralytics.yolo.data.converter.min_index ### ::: ultralytics.yolo.data.converter.min_index
<br><br> <br><br>
# merge_multi_segment ## merge_multi_segment
--- ---
:::ultralytics.yolo.data.converter.merge_multi_segment ### ::: ultralytics.yolo.data.converter.merge_multi_segment
<br><br> <br><br>
# delete_dsstore ## delete_dsstore
--- ---
:::ultralytics.yolo.data.converter.delete_dsstore ### ::: ultralytics.yolo.data.converter.delete_dsstore
<br><br> <br><br>

@ -3,42 +3,42 @@ description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and te
keywords: Ultralytics YOLO, data loaders, stream load images, screenshots, tensor data, autocast list, youtube URL retriever keywords: Ultralytics YOLO, data loaders, stream load images, screenshots, tensor data, autocast list, youtube URL retriever
--- ---
# SourceTypes ## SourceTypes
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.SourceTypes ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.SourceTypes
<br><br> <br><br>
# LoadStreams ## LoadStreams
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadStreams ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadStreams
<br><br> <br><br>
# LoadScreenshots ## LoadScreenshots
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadScreenshots ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadScreenshots
<br><br> <br><br>
# LoadImages ## LoadImages
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadImages ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadImages
<br><br> <br><br>
# LoadPilAndNumpy ## LoadPilAndNumpy
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadPilAndNumpy ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadPilAndNumpy
<br><br> <br><br>
# LoadTensor ## LoadTensor
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadTensor ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.LoadTensor
<br><br> <br><br>
# autocast_list ## autocast_list
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
<br><br> <br><br>
# get_best_youtube_url ## get_best_youtube_url
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url ### ::: ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url
<br><br> <br><br>

@ -3,87 +3,87 @@ description: Enhance image data with Albumentations CenterCrop, normalize, augme
keywords: YOLO, object detection, data loaders, V5 augmentations, CenterCrop, normalize, random_perspective keywords: YOLO, object detection, data loaders, V5 augmentations, CenterCrop, normalize, random_perspective
--- ---
# Albumentations ## Albumentations
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.Albumentations ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.Albumentations
<br><br> <br><br>
# LetterBox ## LetterBox
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.LetterBox ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.LetterBox
<br><br> <br><br>
# CenterCrop ## CenterCrop
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.CenterCrop ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.CenterCrop
<br><br> <br><br>
# ToTensor ## ToTensor
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.ToTensor ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.ToTensor
<br><br> <br><br>
# normalize ## normalize
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.normalize ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.normalize
<br><br> <br><br>
# denormalize ## denormalize
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.denormalize ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.denormalize
<br><br> <br><br>
# augment_hsv ## augment_hsv
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.augment_hsv ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.augment_hsv
<br><br> <br><br>
# hist_equalize ## hist_equalize
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.hist_equalize ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.hist_equalize
<br><br> <br><br>
# replicate ## replicate
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.replicate ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.replicate
<br><br> <br><br>
# letterbox ## letterbox
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.letterbox ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.letterbox
<br><br> <br><br>
# random_perspective ## random_perspective
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.random_perspective ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.random_perspective
<br><br> <br><br>
# copy_paste ## copy_paste
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.copy_paste ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.copy_paste
<br><br> <br><br>
# cutout ## cutout
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.cutout ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.cutout
<br><br> <br><br>
# mixup ## mixup
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.mixup ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.mixup
<br><br> <br><br>
# box_candidates ## box_candidates
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.box_candidates ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.box_candidates
<br><br> <br><br>
# classify_albumentations ## classify_albumentations
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_albumentations ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.classify_albumentations
<br><br> <br><br>
# classify_transforms ## classify_transforms
--- ---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms ### ::: ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms
<br><br> <br><br>

@ -3,92 +3,92 @@ description: Efficiently load images and labels to models using Ultralytics YOLO
keywords: YOLO, data loader, image classification, object detection, Ultralytics keywords: YOLO, data loader, image classification, object detection, Ultralytics
--- ---
# InfiniteDataLoader ## InfiniteDataLoader
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.InfiniteDataLoader ### ::: ultralytics.yolo.data.dataloaders.v5loader.InfiniteDataLoader
<br><br> <br><br>
# _RepeatSampler ## _RepeatSampler
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader._RepeatSampler ### ::: ultralytics.yolo.data.dataloaders.v5loader._RepeatSampler
<br><br> <br><br>
# LoadScreenshots ## LoadScreenshots
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadScreenshots ### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadScreenshots
<br><br> <br><br>
# LoadImages ## LoadImages
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadImages ### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadImages
<br><br> <br><br>
# LoadStreams ## LoadStreams
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadStreams ### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadStreams
<br><br> <br><br>
# LoadImagesAndLabels ## LoadImagesAndLabels
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadImagesAndLabels ### ::: ultralytics.yolo.data.dataloaders.v5loader.LoadImagesAndLabels
<br><br> <br><br>
# ClassificationDataset ## ClassificationDataset
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.ClassificationDataset ### ::: ultralytics.yolo.data.dataloaders.v5loader.ClassificationDataset
<br><br> <br><br>
# get_hash ## get_hash
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.get_hash ### ::: ultralytics.yolo.data.dataloaders.v5loader.get_hash
<br><br> <br><br>
# exif_size ## exif_size
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.exif_size ### ::: ultralytics.yolo.data.dataloaders.v5loader.exif_size
<br><br> <br><br>
# exif_transpose ## exif_transpose
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.exif_transpose ### ::: ultralytics.yolo.data.dataloaders.v5loader.exif_transpose
<br><br> <br><br>
# seed_worker ## seed_worker
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.seed_worker ### ::: ultralytics.yolo.data.dataloaders.v5loader.seed_worker
<br><br> <br><br>
# create_dataloader ## create_dataloader
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.create_dataloader ### ::: ultralytics.yolo.data.dataloaders.v5loader.create_dataloader
<br><br> <br><br>
# img2label_paths ## img2label_paths
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.img2label_paths ### ::: ultralytics.yolo.data.dataloaders.v5loader.img2label_paths
<br><br> <br><br>
# flatten_recursive ## flatten_recursive
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.flatten_recursive ### ::: ultralytics.yolo.data.dataloaders.v5loader.flatten_recursive
<br><br> <br><br>
# extract_boxes ## extract_boxes
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.extract_boxes ### ::: ultralytics.yolo.data.dataloaders.v5loader.extract_boxes
<br><br> <br><br>
# autosplit ## autosplit
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.autosplit ### ::: ultralytics.yolo.data.dataloaders.v5loader.autosplit
<br><br> <br><br>
# verify_image_label ## verify_image_label
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.verify_image_label ### ::: ultralytics.yolo.data.dataloaders.v5loader.verify_image_label
<br><br> <br><br>
# create_classification_dataloader ## create_classification_dataloader
--- ---
:::ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader ### ::: ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader
<br><br> <br><br>

@ -3,17 +3,17 @@ description: Create custom YOLOv5 datasets with Ultralytics YOLODataset and Sema
keywords: YOLODataset, SemanticDataset, Ultralytics YOLO Docs, Object Detection, Segmentation keywords: YOLODataset, SemanticDataset, Ultralytics YOLO Docs, Object Detection, Segmentation
--- ---
# YOLODataset ## YOLODataset
--- ---
:::ultralytics.yolo.data.dataset.YOLODataset ### ::: ultralytics.yolo.data.dataset.YOLODataset
<br><br> <br><br>
# ClassificationDataset ## ClassificationDataset
--- ---
:::ultralytics.yolo.data.dataset.ClassificationDataset ### ::: ultralytics.yolo.data.dataset.ClassificationDataset
<br><br> <br><br>
# SemanticDataset ## SemanticDataset
--- ---
:::ultralytics.yolo.data.dataset.SemanticDataset ### ::: ultralytics.yolo.data.dataset.SemanticDataset
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Create a custom dataset of mixed and oriented rectangular objects w
keywords: Ultralytics YOLO, MixAndRectDataset, dataset wrapper, image-level annotations, object-level annotations, rectangular object detection keywords: Ultralytics YOLO, MixAndRectDataset, dataset wrapper, image-level annotations, object-level annotations, rectangular object detection
--- ---
# MixAndRectDataset ## MixAndRectDataset
--- ---
:::ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset ### ::: ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset
<br><br> <br><br>

@ -3,67 +3,67 @@ description: Efficiently handle data in YOLO with Ultralytics. Utilize HUBDatase
keywords: YOLOv4, Object Detection, Computer Vision, Deep Learning, Convolutional Neural Network, CNN, Ultralytics Docs keywords: YOLOv4, Object Detection, Computer Vision, Deep Learning, Convolutional Neural Network, CNN, Ultralytics Docs
--- ---
# HUBDatasetStats ## HUBDatasetStats
--- ---
:::ultralytics.yolo.data.utils.HUBDatasetStats ### ::: ultralytics.yolo.data.utils.HUBDatasetStats
<br><br> <br><br>
# img2label_paths ## img2label_paths
--- ---
:::ultralytics.yolo.data.utils.img2label_paths ### ::: ultralytics.yolo.data.utils.img2label_paths
<br><br> <br><br>
# get_hash ## get_hash
--- ---
:::ultralytics.yolo.data.utils.get_hash ### ::: ultralytics.yolo.data.utils.get_hash
<br><br> <br><br>
# exif_size ## exif_size
--- ---
:::ultralytics.yolo.data.utils.exif_size ### ::: ultralytics.yolo.data.utils.exif_size
<br><br> <br><br>
# verify_image_label ## verify_image_label
--- ---
:::ultralytics.yolo.data.utils.verify_image_label ### ::: ultralytics.yolo.data.utils.verify_image_label
<br><br> <br><br>
# polygon2mask ## polygon2mask
--- ---
:::ultralytics.yolo.data.utils.polygon2mask ### ::: ultralytics.yolo.data.utils.polygon2mask
<br><br> <br><br>
# polygons2masks ## polygons2masks
--- ---
:::ultralytics.yolo.data.utils.polygons2masks ### ::: ultralytics.yolo.data.utils.polygons2masks
<br><br> <br><br>
# polygons2masks_overlap ## polygons2masks_overlap
--- ---
:::ultralytics.yolo.data.utils.polygons2masks_overlap ### ::: ultralytics.yolo.data.utils.polygons2masks_overlap
<br><br> <br><br>
# check_det_dataset ## check_det_dataset
--- ---
:::ultralytics.yolo.data.utils.check_det_dataset ### ::: ultralytics.yolo.data.utils.check_det_dataset
<br><br> <br><br>
# check_cls_dataset ## check_cls_dataset
--- ---
:::ultralytics.yolo.data.utils.check_cls_dataset ### ::: ultralytics.yolo.data.utils.check_cls_dataset
<br><br> <br><br>
# compress_one_image ## compress_one_image
--- ---
:::ultralytics.yolo.data.utils.compress_one_image ### ::: ultralytics.yolo.data.utils.compress_one_image
<br><br> <br><br>
# delete_dsstore ## delete_dsstore
--- ---
:::ultralytics.yolo.data.utils.delete_dsstore ### ::: ultralytics.yolo.data.utils.delete_dsstore
<br><br> <br><br>
# zip_directory ## zip_directory
--- ---
:::ultralytics.yolo.data.utils.zip_directory ### ::: ultralytics.yolo.data.utils.zip_directory
<br><br> <br><br>

@ -3,32 +3,32 @@ description: Learn how to export your YOLO model in various formats using Ultral
keywords: Ultralytics, YOLO, exporter, iOS detect model, gd_outputs, export keywords: Ultralytics, YOLO, exporter, iOS detect model, gd_outputs, export
--- ---
# Exporter ## Exporter
--- ---
:::ultralytics.yolo.engine.exporter.Exporter ### ::: ultralytics.yolo.engine.exporter.Exporter
<br><br> <br><br>
# iOSDetectModel ## iOSDetectModel
--- ---
:::ultralytics.yolo.engine.exporter.iOSDetectModel ### ::: ultralytics.yolo.engine.exporter.iOSDetectModel
<br><br> <br><br>
# export_formats ## export_formats
--- ---
:::ultralytics.yolo.engine.exporter.export_formats ### ::: ultralytics.yolo.engine.exporter.export_formats
<br><br> <br><br>
# gd_outputs ## gd_outputs
--- ---
:::ultralytics.yolo.engine.exporter.gd_outputs ### ::: ultralytics.yolo.engine.exporter.gd_outputs
<br><br> <br><br>
# try_export ## try_export
--- ---
:::ultralytics.yolo.engine.exporter.try_export ### ::: ultralytics.yolo.engine.exporter.try_export
<br><br> <br><br>
# export ## export
--- ---
:::ultralytics.yolo.engine.exporter.export ### ::: ultralytics.yolo.engine.exporter.export
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Discover the YOLO model of Ultralytics engine to simplify your obje
keywords: YOLO, object detection, model, architecture, usage, customization, Ultralytics Docs keywords: YOLO, object detection, model, architecture, usage, customization, Ultralytics Docs
--- ---
# YOLO ## YOLO
--- ---
:::ultralytics.yolo.engine.model.YOLO ### ::: ultralytics.yolo.engine.model.YOLO
<br><br> <br><br>

@ -3,7 +3,7 @@ description: '"The BasePredictor class in Ultralytics YOLO Engine predicts objec
keywords: Ultralytics, YOLO, BasePredictor, Object Detection, Computer Vision, Fast Model, Insights keywords: Ultralytics, YOLO, BasePredictor, Object Detection, Computer Vision, Fast Model, Insights
--- ---
# BasePredictor ## BasePredictor
--- ---
:::ultralytics.yolo.engine.predictor.BasePredictor ### ::: ultralytics.yolo.engine.predictor.BasePredictor
<br><br> <br><br>

@ -3,32 +3,32 @@ description: Learn about BaseTensor & Boxes in Ultralytics YOLO Engine. Check ou
keywords: YOLO, Engine, Results, Masks, Probs, Ultralytics keywords: YOLO, Engine, Results, Masks, Probs, Ultralytics
--- ---
# BaseTensor ## BaseTensor
--- ---
:::ultralytics.yolo.engine.results.BaseTensor ### ::: ultralytics.yolo.engine.results.BaseTensor
<br><br> <br><br>
# Results ## Results
--- ---
:::ultralytics.yolo.engine.results.Results ### ::: ultralytics.yolo.engine.results.Results
<br><br> <br><br>
# Boxes ## Boxes
--- ---
:::ultralytics.yolo.engine.results.Boxes ### ::: ultralytics.yolo.engine.results.Boxes
<br><br> <br><br>
# Masks ## Masks
--- ---
:::ultralytics.yolo.engine.results.Masks ### ::: ultralytics.yolo.engine.results.Masks
<br><br> <br><br>
# Keypoints ## Keypoints
--- ---
:::ultralytics.yolo.engine.results.Keypoints ### ::: ultralytics.yolo.engine.results.Keypoints
<br><br> <br><br>
# Probs ## Probs
--- ---
:::ultralytics.yolo.engine.results.Probs ### ::: ultralytics.yolo.engine.results.Probs
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Train faster with mixed precision. Learn how to use BaseTrainer wit
keywords: Ultralytics YOLO, BaseTrainer, object detection models, training guide keywords: Ultralytics YOLO, BaseTrainer, object detection models, training guide
--- ---
# BaseTrainer ## BaseTrainer
--- ---
:::ultralytics.yolo.engine.trainer.BaseTrainer ### ::: ultralytics.yolo.engine.trainer.BaseTrainer
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Ensure YOLOv5 models meet constraints and standards with the BaseVa
keywords: Ultralytics, YOLO, BaseValidator, models, validation, object detection keywords: Ultralytics, YOLO, BaseValidator, models, validation, object detection
--- ---
# BaseValidator ## BaseValidator
--- ---
:::ultralytics.yolo.engine.validator.BaseValidator ### ::: ultralytics.yolo.engine.validator.BaseValidator
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn about the Neural Architecture Search (NAS) feature available
keywords: Ultralytics YOLO, object detection, NAS, Neural Architecture Search, model optimization, accuracy improvement keywords: Ultralytics YOLO, object detection, NAS, Neural Architecture Search, model optimization, accuracy improvement
--- ---
# NAS ## NAS
--- ---
:::ultralytics.yolo.nas.model.NAS ### ::: ultralytics.yolo.nas.model.NAS
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn how to use NASPredictor in Ultralytics YOLO for deploying eff
keywords: Ultralytics YOLO, NASPredictor, neural architecture search, efficient CNN models, search algorithms keywords: Ultralytics YOLO, NASPredictor, neural architecture search, efficient CNN models, search algorithms
--- ---
# NASPredictor ## NASPredictor
--- ---
:::ultralytics.yolo.nas.predict.NASPredictor ### ::: ultralytics.yolo.nas.predict.NASPredictor
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn about NASValidator in the Ultralytics YOLO Docs. Properly val
keywords: NASValidator, YOLO, neural architecture search, validation, performance, Ultralytics keywords: NASValidator, YOLO, neural architecture search, validation, performance, Ultralytics
--- ---
# NASValidator ## NASValidator
--- ---
:::ultralytics.yolo.nas.val.NASValidator ### ::: ultralytics.yolo.nas.val.NASValidator
<br><br> <br><br>

@ -3,167 +3,167 @@ description: Uncover utility functions in Ultralytics YOLO. Handle YAML, threadi
keywords: Ultralytics, YOLO, utils, SimpleClass, IterableSimpleNamespace, EmojiFilter, TryExcept, plt_settings, set_logging, emojis, yaml_save, yaml_load, yaml_print, is_colab, is_kaggle, is_jupyter, is_docker, is_online, is_pip_package, is_dir_writeable, is_pytest_running, is_github_actions_ci, is_git_dir, get_git_dir, get_git_origin_url, get_git_branch, get_default_args, get_user_config_dir, colorstr, threaded, set_sentry, get_settings, set_settings, deprecation_warn, clean_url, url2file keywords: Ultralytics, YOLO, utils, SimpleClass, IterableSimpleNamespace, EmojiFilter, TryExcept, plt_settings, set_logging, emojis, yaml_save, yaml_load, yaml_print, is_colab, is_kaggle, is_jupyter, is_docker, is_online, is_pip_package, is_dir_writeable, is_pytest_running, is_github_actions_ci, is_git_dir, get_git_dir, get_git_origin_url, get_git_branch, get_default_args, get_user_config_dir, colorstr, threaded, set_sentry, get_settings, set_settings, deprecation_warn, clean_url, url2file
--- ---
# SimpleClass ## SimpleClass
--- ---
:::ultralytics.yolo.utils.SimpleClass ### ::: ultralytics.yolo.utils.SimpleClass
<br><br> <br><br>
# IterableSimpleNamespace ## IterableSimpleNamespace
--- ---
:::ultralytics.yolo.utils.IterableSimpleNamespace ### ::: ultralytics.yolo.utils.IterableSimpleNamespace
<br><br> <br><br>
# EmojiFilter ## EmojiFilter
--- ---
:::ultralytics.yolo.utils.EmojiFilter ### ::: ultralytics.yolo.utils.EmojiFilter
<br><br> <br><br>
# TryExcept ## TryExcept
--- ---
:::ultralytics.yolo.utils.TryExcept ### ::: ultralytics.yolo.utils.TryExcept
<br><br> <br><br>
# plt_settings ## plt_settings
--- ---
:::ultralytics.yolo.utils.plt_settings ### ::: ultralytics.yolo.utils.plt_settings
<br><br> <br><br>
# set_logging ## set_logging
--- ---
:::ultralytics.yolo.utils.set_logging ### ::: ultralytics.yolo.utils.set_logging
<br><br> <br><br>
# emojis ## emojis
--- ---
:::ultralytics.yolo.utils.emojis ### ::: ultralytics.yolo.utils.emojis
<br><br> <br><br>
# yaml_save ## yaml_save
--- ---
:::ultralytics.yolo.utils.yaml_save ### ::: ultralytics.yolo.utils.yaml_save
<br><br> <br><br>
# yaml_load ## yaml_load
--- ---
:::ultralytics.yolo.utils.yaml_load ### ::: ultralytics.yolo.utils.yaml_load
<br><br> <br><br>
# yaml_print ## yaml_print
--- ---
:::ultralytics.yolo.utils.yaml_print ### ::: ultralytics.yolo.utils.yaml_print
<br><br> <br><br>
# is_colab ## is_colab
--- ---
:::ultralytics.yolo.utils.is_colab ### ::: ultralytics.yolo.utils.is_colab
<br><br> <br><br>
# is_kaggle ## is_kaggle
--- ---
:::ultralytics.yolo.utils.is_kaggle ### ::: ultralytics.yolo.utils.is_kaggle
<br><br> <br><br>
# is_jupyter ## is_jupyter
--- ---
:::ultralytics.yolo.utils.is_jupyter ### ::: ultralytics.yolo.utils.is_jupyter
<br><br> <br><br>
# is_docker ## is_docker
--- ---
:::ultralytics.yolo.utils.is_docker ### ::: ultralytics.yolo.utils.is_docker
<br><br> <br><br>
# is_online ## is_online
--- ---
:::ultralytics.yolo.utils.is_online ### ::: ultralytics.yolo.utils.is_online
<br><br> <br><br>
# is_pip_package ## is_pip_package
--- ---
:::ultralytics.yolo.utils.is_pip_package ### ::: ultralytics.yolo.utils.is_pip_package
<br><br> <br><br>
# is_dir_writeable ## is_dir_writeable
--- ---
:::ultralytics.yolo.utils.is_dir_writeable ### ::: ultralytics.yolo.utils.is_dir_writeable
<br><br> <br><br>
# is_pytest_running ## is_pytest_running
--- ---
:::ultralytics.yolo.utils.is_pytest_running ### ::: ultralytics.yolo.utils.is_pytest_running
<br><br> <br><br>
# is_github_actions_ci ## is_github_actions_ci
--- ---
:::ultralytics.yolo.utils.is_github_actions_ci ### ::: ultralytics.yolo.utils.is_github_actions_ci
<br><br> <br><br>
# is_git_dir ## is_git_dir
--- ---
:::ultralytics.yolo.utils.is_git_dir ### ::: ultralytics.yolo.utils.is_git_dir
<br><br> <br><br>
# get_git_dir ## get_git_dir
--- ---
:::ultralytics.yolo.utils.get_git_dir ### ::: ultralytics.yolo.utils.get_git_dir
<br><br> <br><br>
# get_git_origin_url ## get_git_origin_url
--- ---
:::ultralytics.yolo.utils.get_git_origin_url ### ::: ultralytics.yolo.utils.get_git_origin_url
<br><br> <br><br>
# get_git_branch ## get_git_branch
--- ---
:::ultralytics.yolo.utils.get_git_branch ### ::: ultralytics.yolo.utils.get_git_branch
<br><br> <br><br>
# get_default_args ## get_default_args
--- ---
:::ultralytics.yolo.utils.get_default_args ### ::: ultralytics.yolo.utils.get_default_args
<br><br> <br><br>
# get_user_config_dir ## get_user_config_dir
--- ---
:::ultralytics.yolo.utils.get_user_config_dir ### ::: ultralytics.yolo.utils.get_user_config_dir
<br><br> <br><br>
# colorstr ## colorstr
--- ---
:::ultralytics.yolo.utils.colorstr ### ::: ultralytics.yolo.utils.colorstr
<br><br> <br><br>
# threaded ## threaded
--- ---
:::ultralytics.yolo.utils.threaded ### ::: ultralytics.yolo.utils.threaded
<br><br> <br><br>
# set_sentry ## set_sentry
--- ---
:::ultralytics.yolo.utils.set_sentry ### ::: ultralytics.yolo.utils.set_sentry
<br><br> <br><br>
# get_settings ## get_settings
--- ---
:::ultralytics.yolo.utils.get_settings ### ::: ultralytics.yolo.utils.get_settings
<br><br> <br><br>
# set_settings ## set_settings
--- ---
:::ultralytics.yolo.utils.set_settings ### ::: ultralytics.yolo.utils.set_settings
<br><br> <br><br>
# deprecation_warn ## deprecation_warn
--- ---
:::ultralytics.yolo.utils.deprecation_warn ### ::: ultralytics.yolo.utils.deprecation_warn
<br><br> <br><br>
# clean_url ## clean_url
--- ---
:::ultralytics.yolo.utils.clean_url ### ::: ultralytics.yolo.utils.clean_url
<br><br> <br><br>
# url2file ## url2file
--- ---
:::ultralytics.yolo.utils.url2file ### ::: ultralytics.yolo.utils.url2file
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Dynamically adjusts input size to optimize GPU memory usage during
keywords: YOLOv5, batch size, training, Ultralytics Autobatch, object detection, model performance keywords: YOLOv5, batch size, training, Ultralytics Autobatch, object detection, model performance
--- ---
# check_train_batch_size ## check_train_batch_size
--- ---
:::ultralytics.yolo.utils.autobatch.check_train_batch_size ### ::: ultralytics.yolo.utils.autobatch.check_train_batch_size
<br><br> <br><br>
# autobatch ## autobatch
--- ---
:::ultralytics.yolo.utils.autobatch.autobatch ### ::: ultralytics.yolo.utils.autobatch.autobatch
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Improve your YOLO's performance and measure its speed. Benchmark ut
keywords: Ultralytics YOLO, ProfileModels, benchmark, model inference, detection keywords: Ultralytics YOLO, ProfileModels, benchmark, model inference, detection
--- ---
# ProfileModels ## ProfileModels
--- ---
:::ultralytics.yolo.utils.benchmarks.ProfileModels ### ::: ultralytics.yolo.utils.benchmarks.ProfileModels
<br><br> <br><br>
# benchmark ## benchmark
--- ---
:::ultralytics.yolo.utils.benchmarks.benchmark ### ::: ultralytics.yolo.utils.benchmarks.benchmark
<br><br> <br><br>

@ -3,137 +3,137 @@ description: Learn about YOLO's callback functions from on_train_start to add_in
keywords: YOLO, Ultralytics, callbacks, object detection, training, inference keywords: YOLO, Ultralytics, callbacks, object detection, training, inference
--- ---
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start
<br><br> <br><br>
# on_pretrain_routine_end ## on_pretrain_routine_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_end ### ::: ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_end
<br><br> <br><br>
# on_train_start ## on_train_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_train_start ### ::: ultralytics.yolo.utils.callbacks.base.on_train_start
<br><br> <br><br>
# on_train_epoch_start ## on_train_epoch_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_train_epoch_start ### ::: ultralytics.yolo.utils.callbacks.base.on_train_epoch_start
<br><br> <br><br>
# on_train_batch_start ## on_train_batch_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_train_batch_start ### ::: ultralytics.yolo.utils.callbacks.base.on_train_batch_start
<br><br> <br><br>
# optimizer_step ## optimizer_step
--- ---
:::ultralytics.yolo.utils.callbacks.base.optimizer_step ### ::: ultralytics.yolo.utils.callbacks.base.optimizer_step
<br><br> <br><br>
# on_before_zero_grad ## on_before_zero_grad
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_before_zero_grad ### ::: ultralytics.yolo.utils.callbacks.base.on_before_zero_grad
<br><br> <br><br>
# on_train_batch_end ## on_train_batch_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_train_batch_end ### ::: ultralytics.yolo.utils.callbacks.base.on_train_batch_end
<br><br> <br><br>
# on_train_epoch_end ## on_train_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_train_epoch_end ### ::: ultralytics.yolo.utils.callbacks.base.on_train_epoch_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.base.on_fit_epoch_end
<br><br> <br><br>
# on_model_save ## on_model_save
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_model_save ### ::: ultralytics.yolo.utils.callbacks.base.on_model_save
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_train_end ### ::: ultralytics.yolo.utils.callbacks.base.on_train_end
<br><br> <br><br>
# on_params_update ## on_params_update
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_params_update ### ::: ultralytics.yolo.utils.callbacks.base.on_params_update
<br><br> <br><br>
# teardown ## teardown
--- ---
:::ultralytics.yolo.utils.callbacks.base.teardown ### ::: ultralytics.yolo.utils.callbacks.base.teardown
<br><br> <br><br>
# on_val_start ## on_val_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_val_start ### ::: ultralytics.yolo.utils.callbacks.base.on_val_start
<br><br> <br><br>
# on_val_batch_start ## on_val_batch_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_val_batch_start ### ::: ultralytics.yolo.utils.callbacks.base.on_val_batch_start
<br><br> <br><br>
# on_val_batch_end ## on_val_batch_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_val_batch_end ### ::: ultralytics.yolo.utils.callbacks.base.on_val_batch_end
<br><br> <br><br>
# on_val_end ## on_val_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_val_end ### ::: ultralytics.yolo.utils.callbacks.base.on_val_end
<br><br> <br><br>
# on_predict_start ## on_predict_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_predict_start ### ::: ultralytics.yolo.utils.callbacks.base.on_predict_start
<br><br> <br><br>
# on_predict_batch_start ## on_predict_batch_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_predict_batch_start ### ::: ultralytics.yolo.utils.callbacks.base.on_predict_batch_start
<br><br> <br><br>
# on_predict_batch_end ## on_predict_batch_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_predict_batch_end ### ::: ultralytics.yolo.utils.callbacks.base.on_predict_batch_end
<br><br> <br><br>
# on_predict_postprocess_end ## on_predict_postprocess_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_predict_postprocess_end ### ::: ultralytics.yolo.utils.callbacks.base.on_predict_postprocess_end
<br><br> <br><br>
# on_predict_end ## on_predict_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_predict_end ### ::: ultralytics.yolo.utils.callbacks.base.on_predict_end
<br><br> <br><br>
# on_export_start ## on_export_start
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_export_start ### ::: ultralytics.yolo.utils.callbacks.base.on_export_start
<br><br> <br><br>
# on_export_end ## on_export_end
--- ---
:::ultralytics.yolo.utils.callbacks.base.on_export_end ### ::: ultralytics.yolo.utils.callbacks.base.on_export_end
<br><br> <br><br>
# get_default_callbacks ## get_default_callbacks
--- ---
:::ultralytics.yolo.utils.callbacks.base.get_default_callbacks ### ::: ultralytics.yolo.utils.callbacks.base.get_default_callbacks
<br><br> <br><br>
# add_integration_callbacks ## add_integration_callbacks
--- ---
:::ultralytics.yolo.utils.callbacks.base.add_integration_callbacks ### ::: ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
<br><br> <br><br>

@ -3,37 +3,37 @@ description: Improve your YOLOv5 model training with callbacks from ClearML. Lea
keywords: Ultralytics YOLO, callbacks, log plots, epoch monitoring, training end events keywords: Ultralytics YOLO, callbacks, log plots, epoch monitoring, training end events
--- ---
# _log_debug_samples ## _log_debug_samples
--- ---
:::ultralytics.yolo.utils.callbacks.clearml._log_debug_samples ### ::: ultralytics.yolo.utils.callbacks.clearml._log_debug_samples
<br><br> <br><br>
# _log_plot ## _log_plot
--- ---
:::ultralytics.yolo.utils.callbacks.clearml._log_plot ### ::: ultralytics.yolo.utils.callbacks.clearml._log_plot
<br><br> <br><br>
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.clearml.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.clearml.on_pretrain_routine_start
<br><br> <br><br>
# on_train_epoch_end ## on_train_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_epoch_end ### ::: ultralytics.yolo.utils.callbacks.clearml.on_train_epoch_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.clearml.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.clearml.on_fit_epoch_end
<br><br> <br><br>
# on_val_end ## on_val_end
--- ---
:::ultralytics.yolo.utils.callbacks.clearml.on_val_end ### ::: ultralytics.yolo.utils.callbacks.clearml.on_val_end
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_end ### ::: ultralytics.yolo.utils.callbacks.clearml.on_train_end
<br><br> <br><br>

@ -3,122 +3,122 @@ description: Learn about YOLO callbacks using the Comet.ml platform, enhancing o
keywords: Ultralytics, YOLO, callbacks, Comet ML, log images, log predictions, log plots, fetch metadata, fetch annotations, create experiment data, format experiment data keywords: Ultralytics, YOLO, callbacks, Comet ML, log images, log predictions, log plots, fetch metadata, fetch annotations, create experiment data, format experiment data
--- ---
# _get_comet_mode ## _get_comet_mode
--- ---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_mode ### ::: ultralytics.yolo.utils.callbacks.comet._get_comet_mode
<br><br> <br><br>
# _get_comet_model_name ## _get_comet_model_name
--- ---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_model_name ### ::: ultralytics.yolo.utils.callbacks.comet._get_comet_model_name
<br><br> <br><br>
# _get_eval_batch_logging_interval ## _get_eval_batch_logging_interval
--- ---
:::ultralytics.yolo.utils.callbacks.comet._get_eval_batch_logging_interval ### ::: ultralytics.yolo.utils.callbacks.comet._get_eval_batch_logging_interval
<br><br> <br><br>
# _get_max_image_predictions_to_log ## _get_max_image_predictions_to_log
--- ---
:::ultralytics.yolo.utils.callbacks.comet._get_max_image_predictions_to_log ### ::: ultralytics.yolo.utils.callbacks.comet._get_max_image_predictions_to_log
<br><br> <br><br>
# _scale_confidence_score ## _scale_confidence_score
--- ---
:::ultralytics.yolo.utils.callbacks.comet._scale_confidence_score ### ::: ultralytics.yolo.utils.callbacks.comet._scale_confidence_score
<br><br> <br><br>
# _should_log_confusion_matrix ## _should_log_confusion_matrix
--- ---
:::ultralytics.yolo.utils.callbacks.comet._should_log_confusion_matrix ### ::: ultralytics.yolo.utils.callbacks.comet._should_log_confusion_matrix
<br><br> <br><br>
# _should_log_image_predictions ## _should_log_image_predictions
--- ---
:::ultralytics.yolo.utils.callbacks.comet._should_log_image_predictions ### ::: ultralytics.yolo.utils.callbacks.comet._should_log_image_predictions
<br><br> <br><br>
# _get_experiment_type ## _get_experiment_type
--- ---
:::ultralytics.yolo.utils.callbacks.comet._get_experiment_type ### ::: ultralytics.yolo.utils.callbacks.comet._get_experiment_type
<br><br> <br><br>
# _create_experiment ## _create_experiment
--- ---
:::ultralytics.yolo.utils.callbacks.comet._create_experiment ### ::: ultralytics.yolo.utils.callbacks.comet._create_experiment
<br><br> <br><br>
# _fetch_trainer_metadata ## _fetch_trainer_metadata
--- ---
:::ultralytics.yolo.utils.callbacks.comet._fetch_trainer_metadata ### ::: ultralytics.yolo.utils.callbacks.comet._fetch_trainer_metadata
<br><br> <br><br>
# _scale_bounding_box_to_original_image_shape ## _scale_bounding_box_to_original_image_shape
--- ---
:::ultralytics.yolo.utils.callbacks.comet._scale_bounding_box_to_original_image_shape ### ::: ultralytics.yolo.utils.callbacks.comet._scale_bounding_box_to_original_image_shape
<br><br> <br><br>
# _format_ground_truth_annotations_for_detection ## _format_ground_truth_annotations_for_detection
--- ---
:::ultralytics.yolo.utils.callbacks.comet._format_ground_truth_annotations_for_detection ### ::: ultralytics.yolo.utils.callbacks.comet._format_ground_truth_annotations_for_detection
<br><br> <br><br>
# _format_prediction_annotations_for_detection ## _format_prediction_annotations_for_detection
--- ---
:::ultralytics.yolo.utils.callbacks.comet._format_prediction_annotations_for_detection ### ::: ultralytics.yolo.utils.callbacks.comet._format_prediction_annotations_for_detection
<br><br> <br><br>
# _fetch_annotations ## _fetch_annotations
--- ---
:::ultralytics.yolo.utils.callbacks.comet._fetch_annotations ### ::: ultralytics.yolo.utils.callbacks.comet._fetch_annotations
<br><br> <br><br>
# _create_prediction_metadata_map ## _create_prediction_metadata_map
--- ---
:::ultralytics.yolo.utils.callbacks.comet._create_prediction_metadata_map ### ::: ultralytics.yolo.utils.callbacks.comet._create_prediction_metadata_map
<br><br> <br><br>
# _log_confusion_matrix ## _log_confusion_matrix
--- ---
:::ultralytics.yolo.utils.callbacks.comet._log_confusion_matrix ### ::: ultralytics.yolo.utils.callbacks.comet._log_confusion_matrix
<br><br> <br><br>
# _log_images ## _log_images
--- ---
:::ultralytics.yolo.utils.callbacks.comet._log_images ### ::: ultralytics.yolo.utils.callbacks.comet._log_images
<br><br> <br><br>
# _log_image_predictions ## _log_image_predictions
--- ---
:::ultralytics.yolo.utils.callbacks.comet._log_image_predictions ### ::: ultralytics.yolo.utils.callbacks.comet._log_image_predictions
<br><br> <br><br>
# _log_plots ## _log_plots
--- ---
:::ultralytics.yolo.utils.callbacks.comet._log_plots ### ::: ultralytics.yolo.utils.callbacks.comet._log_plots
<br><br> <br><br>
# _log_model ## _log_model
--- ---
:::ultralytics.yolo.utils.callbacks.comet._log_model ### ::: ultralytics.yolo.utils.callbacks.comet._log_model
<br><br> <br><br>
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.comet.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.comet.on_pretrain_routine_start
<br><br> <br><br>
# on_train_epoch_end ## on_train_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.comet.on_train_epoch_end ### ::: ultralytics.yolo.utils.callbacks.comet.on_train_epoch_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.comet.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.comet.on_fit_epoch_end
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.comet.on_train_end ### ::: ultralytics.yolo.utils.callbacks.comet.on_train_end
<br><br> <br><br>

@ -3,52 +3,52 @@ description: Explore Ultralytics YOLO Utils DVC Callbacks such as logging images
keywords: Ultralytics, YOLO, Utils, DVC, Callbacks, images, plots, confusion matrices, training progress keywords: Ultralytics, YOLO, Utils, DVC, Callbacks, images, plots, confusion matrices, training progress
--- ---
# _logger_disabled ## _logger_disabled
--- ---
:::ultralytics.yolo.utils.callbacks.dvc._logger_disabled ### ::: ultralytics.yolo.utils.callbacks.dvc._logger_disabled
<br><br> <br><br>
# _log_images ## _log_images
--- ---
:::ultralytics.yolo.utils.callbacks.dvc._log_images ### ::: ultralytics.yolo.utils.callbacks.dvc._log_images
<br><br> <br><br>
# _log_plots ## _log_plots
--- ---
:::ultralytics.yolo.utils.callbacks.dvc._log_plots ### ::: ultralytics.yolo.utils.callbacks.dvc._log_plots
<br><br> <br><br>
# _log_confusion_matrix ## _log_confusion_matrix
--- ---
:::ultralytics.yolo.utils.callbacks.dvc._log_confusion_matrix ### ::: ultralytics.yolo.utils.callbacks.dvc._log_confusion_matrix
<br><br> <br><br>
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_start
<br><br> <br><br>
# on_pretrain_routine_end ## on_pretrain_routine_end
--- ---
:::ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_end ### ::: ultralytics.yolo.utils.callbacks.dvc.on_pretrain_routine_end
<br><br> <br><br>
# on_train_start ## on_train_start
--- ---
:::ultralytics.yolo.utils.callbacks.dvc.on_train_start ### ::: ultralytics.yolo.utils.callbacks.dvc.on_train_start
<br><br> <br><br>
# on_train_epoch_start ## on_train_epoch_start
--- ---
:::ultralytics.yolo.utils.callbacks.dvc.on_train_epoch_start ### ::: ultralytics.yolo.utils.callbacks.dvc.on_train_epoch_start
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.dvc.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.dvc.on_fit_epoch_end
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.dvc.on_train_end ### ::: ultralytics.yolo.utils.callbacks.dvc.on_train_end
<br><br> <br><br>

@ -3,42 +3,42 @@ description: Improve YOLOv5 model training with Ultralytics' on-train callbacks.
keywords: Ultralytics, YOLO, callbacks, on_pretrain_routine_end, on_fit_epoch_end, on_train_start, on_val_start, on_predict_start, on_export_start keywords: Ultralytics, YOLO, callbacks, on_pretrain_routine_end, on_fit_epoch_end, on_train_start, on_val_start, on_predict_start, on_export_start
--- ---
# on_pretrain_routine_end ## on_pretrain_routine_end
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end ### ::: ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.hub.on_fit_epoch_end
<br><br> <br><br>
# on_model_save ## on_model_save
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_model_save ### ::: ultralytics.yolo.utils.callbacks.hub.on_model_save
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_train_end ### ::: ultralytics.yolo.utils.callbacks.hub.on_train_end
<br><br> <br><br>
# on_train_start ## on_train_start
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_train_start ### ::: ultralytics.yolo.utils.callbacks.hub.on_train_start
<br><br> <br><br>
# on_val_start ## on_val_start
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_val_start ### ::: ultralytics.yolo.utils.callbacks.hub.on_val_start
<br><br> <br><br>
# on_predict_start ## on_predict_start
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_predict_start ### ::: ultralytics.yolo.utils.callbacks.hub.on_predict_start
<br><br> <br><br>
# on_export_start ## on_export_start
--- ---
:::ultralytics.yolo.utils.callbacks.hub.on_export_start ### ::: ultralytics.yolo.utils.callbacks.hub.on_export_start
<br><br> <br><br>

@ -3,17 +3,17 @@ description: Track model performance and metrics with MLflow in YOLOv5. Use call
keywords: Ultralytics, YOLO, Utils, MLflow, callbacks, on_pretrain_routine_end, on_train_end, Tracking, Model Management, training keywords: Ultralytics, YOLO, Utils, MLflow, callbacks, on_pretrain_routine_end, on_train_end, Tracking, Model Management, training
--- ---
# on_pretrain_routine_end ## on_pretrain_routine_end
--- ---
:::ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end ### ::: ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.mlflow.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.mlflow.on_fit_epoch_end
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.mlflow.on_train_end ### ::: ultralytics.yolo.utils.callbacks.mlflow.on_train_end
<br><br> <br><br>

@ -3,42 +3,42 @@ description: Improve YOLOv5 training with Neptune, a powerful logging tool. Trac
keywords: Ultralytics, YOLO, Neptune, Callbacks, log scalars, log images, log plots, training, validation keywords: Ultralytics, YOLO, Neptune, Callbacks, log scalars, log images, log plots, training, validation
--- ---
# _log_scalars ## _log_scalars
--- ---
:::ultralytics.yolo.utils.callbacks.neptune._log_scalars ### ::: ultralytics.yolo.utils.callbacks.neptune._log_scalars
<br><br> <br><br>
# _log_images ## _log_images
--- ---
:::ultralytics.yolo.utils.callbacks.neptune._log_images ### ::: ultralytics.yolo.utils.callbacks.neptune._log_images
<br><br> <br><br>
# _log_plot ## _log_plot
--- ---
:::ultralytics.yolo.utils.callbacks.neptune._log_plot ### ::: ultralytics.yolo.utils.callbacks.neptune._log_plot
<br><br> <br><br>
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.neptune.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.neptune.on_pretrain_routine_start
<br><br> <br><br>
# on_train_epoch_end ## on_train_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_epoch_end ### ::: ultralytics.yolo.utils.callbacks.neptune.on_train_epoch_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.neptune.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.neptune.on_fit_epoch_end
<br><br> <br><br>
# on_val_end ## on_val_end
--- ---
:::ultralytics.yolo.utils.callbacks.neptune.on_val_end ### ::: ultralytics.yolo.utils.callbacks.neptune.on_val_end
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_end ### ::: ultralytics.yolo.utils.callbacks.neptune.on_train_end
<br><br> <br><br>

@ -3,7 +3,7 @@ description: '"Improve YOLO model performance with on_fit_epoch_end callback. Le
keywords: on_fit_epoch_end, Ultralytics YOLO, callback function, training, model tuning keywords: on_fit_epoch_end, Ultralytics YOLO, callback function, training, model tuning
--- ---
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
<br><br> <br><br>

@ -3,22 +3,22 @@ description: Learn how to monitor the training process with Tensorboard using Ul
keywords: TensorBoard callbacks, YOLO training, ultralytics YOLO keywords: TensorBoard callbacks, YOLO training, ultralytics YOLO
--- ---
# _log_scalars ## _log_scalars
--- ---
:::ultralytics.yolo.utils.callbacks.tensorboard._log_scalars ### ::: ultralytics.yolo.utils.callbacks.tensorboard._log_scalars
<br><br> <br><br>
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.tensorboard.on_pretrain_routine_start
<br><br> <br><br>
# on_batch_end ## on_batch_end
--- ---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_batch_end ### ::: ultralytics.yolo.utils.callbacks.tensorboard.on_batch_end
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
<br><br> <br><br>

@ -3,27 +3,27 @@ description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain
keywords: Ultralytics, YOLO, callbacks, weights, biases, training keywords: Ultralytics, YOLO, callbacks, weights, biases, training
--- ---
# _log_plots ## _log_plots
--- ---
:::ultralytics.yolo.utils.callbacks.wb._log_plots ### ::: ultralytics.yolo.utils.callbacks.wb._log_plots
<br><br> <br><br>
# on_pretrain_routine_start ## on_pretrain_routine_start
--- ---
:::ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start ### ::: ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
<br><br> <br><br>
# on_fit_epoch_end ## on_fit_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.wb.on_fit_epoch_end ### ::: ultralytics.yolo.utils.callbacks.wb.on_fit_epoch_end
<br><br> <br><br>
# on_train_epoch_end ## on_train_epoch_end
--- ---
:::ultralytics.yolo.utils.callbacks.wb.on_train_epoch_end ### ::: ultralytics.yolo.utils.callbacks.wb.on_train_epoch_end
<br><br> <br><br>
# on_train_end ## on_train_end
--- ---
:::ultralytics.yolo.utils.callbacks.wb.on_train_end ### ::: ultralytics.yolo.utils.callbacks.wb.on_train_end
<br><br> <br><br>

@ -3,87 +3,87 @@ description: 'Check functions for YOLO utils: image size, version, font, require
keywords: YOLO, Ultralytics, Utils, Checks, image sizing, version updates, font compatibility, Python requirements, file suffixes, YAML syntax, image showing, AMP keywords: YOLO, Ultralytics, Utils, Checks, image sizing, version updates, font compatibility, Python requirements, file suffixes, YAML syntax, image showing, AMP
--- ---
# is_ascii ## is_ascii
--- ---
:::ultralytics.yolo.utils.checks.is_ascii ### ::: ultralytics.yolo.utils.checks.is_ascii
<br><br> <br><br>
# check_imgsz ## check_imgsz
--- ---
:::ultralytics.yolo.utils.checks.check_imgsz ### ::: ultralytics.yolo.utils.checks.check_imgsz
<br><br> <br><br>
# check_version ## check_version
--- ---
:::ultralytics.yolo.utils.checks.check_version ### ::: ultralytics.yolo.utils.checks.check_version
<br><br> <br><br>
# check_latest_pypi_version ## check_latest_pypi_version
--- ---
:::ultralytics.yolo.utils.checks.check_latest_pypi_version ### ::: ultralytics.yolo.utils.checks.check_latest_pypi_version
<br><br> <br><br>
# check_pip_update_available ## check_pip_update_available
--- ---
:::ultralytics.yolo.utils.checks.check_pip_update_available ### ::: ultralytics.yolo.utils.checks.check_pip_update_available
<br><br> <br><br>
# check_font ## check_font
--- ---
:::ultralytics.yolo.utils.checks.check_font ### ::: ultralytics.yolo.utils.checks.check_font
<br><br> <br><br>
# check_python ## check_python
--- ---
:::ultralytics.yolo.utils.checks.check_python ### ::: ultralytics.yolo.utils.checks.check_python
<br><br> <br><br>
# check_requirements ## check_requirements
--- ---
:::ultralytics.yolo.utils.checks.check_requirements ### ::: ultralytics.yolo.utils.checks.check_requirements
<br><br> <br><br>
# check_suffix ## check_suffix
--- ---
:::ultralytics.yolo.utils.checks.check_suffix ### ::: ultralytics.yolo.utils.checks.check_suffix
<br><br> <br><br>
# check_yolov5u_filename ## check_yolov5u_filename
--- ---
:::ultralytics.yolo.utils.checks.check_yolov5u_filename ### ::: ultralytics.yolo.utils.checks.check_yolov5u_filename
<br><br> <br><br>
# check_file ## check_file
--- ---
:::ultralytics.yolo.utils.checks.check_file ### ::: ultralytics.yolo.utils.checks.check_file
<br><br> <br><br>
# check_yaml ## check_yaml
--- ---
:::ultralytics.yolo.utils.checks.check_yaml ### ::: ultralytics.yolo.utils.checks.check_yaml
<br><br> <br><br>
# check_imshow ## check_imshow
--- ---
:::ultralytics.yolo.utils.checks.check_imshow ### ::: ultralytics.yolo.utils.checks.check_imshow
<br><br> <br><br>
# check_yolo ## check_yolo
--- ---
:::ultralytics.yolo.utils.checks.check_yolo ### ::: ultralytics.yolo.utils.checks.check_yolo
<br><br> <br><br>
# check_amp ## check_amp
--- ---
:::ultralytics.yolo.utils.checks.check_amp ### ::: ultralytics.yolo.utils.checks.check_amp
<br><br> <br><br>
# git_describe ## git_describe
--- ---
:::ultralytics.yolo.utils.checks.git_describe ### ::: ultralytics.yolo.utils.checks.git_describe
<br><br> <br><br>
# print_args ## print_args
--- ---
:::ultralytics.yolo.utils.checks.print_args ### ::: ultralytics.yolo.utils.checks.print_args
<br><br> <br><br>

@ -3,22 +3,22 @@ description: Learn how to find free network port and generate DDP (Distributed D
keywords: ultralytics, YOLO, utils, dist, distributed deep learning, DDP file, DDP cleanup keywords: ultralytics, YOLO, utils, dist, distributed deep learning, DDP file, DDP cleanup
--- ---
# find_free_network_port ## find_free_network_port
--- ---
:::ultralytics.yolo.utils.dist.find_free_network_port ### ::: ultralytics.yolo.utils.dist.find_free_network_port
<br><br> <br><br>
# generate_ddp_file ## generate_ddp_file
--- ---
:::ultralytics.yolo.utils.dist.generate_ddp_file ### ::: ultralytics.yolo.utils.dist.generate_ddp_file
<br><br> <br><br>
# generate_ddp_command ## generate_ddp_command
--- ---
:::ultralytics.yolo.utils.dist.generate_ddp_command ### ::: ultralytics.yolo.utils.dist.generate_ddp_command
<br><br> <br><br>
# ddp_cleanup ## ddp_cleanup
--- ---
:::ultralytics.yolo.utils.dist.ddp_cleanup ### ::: ultralytics.yolo.utils.dist.ddp_cleanup
<br><br> <br><br>

@ -3,32 +3,32 @@ description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs ut
keywords: Ultralytics YOLO, downloads, trained models, datasets, weights, deep learning, computer vision keywords: Ultralytics YOLO, downloads, trained models, datasets, weights, deep learning, computer vision
--- ---
# is_url ## is_url
--- ---
:::ultralytics.yolo.utils.downloads.is_url ### ::: ultralytics.yolo.utils.downloads.is_url
<br><br> <br><br>
# unzip_file ## unzip_file
--- ---
:::ultralytics.yolo.utils.downloads.unzip_file ### ::: ultralytics.yolo.utils.downloads.unzip_file
<br><br> <br><br>
# check_disk_space ## check_disk_space
--- ---
:::ultralytics.yolo.utils.downloads.check_disk_space ### ::: ultralytics.yolo.utils.downloads.check_disk_space
<br><br> <br><br>
# safe_download ## safe_download
--- ---
:::ultralytics.yolo.utils.downloads.safe_download ### ::: ultralytics.yolo.utils.downloads.safe_download
<br><br> <br><br>
# attempt_download_asset ## attempt_download_asset
--- ---
:::ultralytics.yolo.utils.downloads.attempt_download_asset ### ::: ultralytics.yolo.utils.downloads.attempt_download_asset
<br><br> <br><br>
# download ## download
--- ---
:::ultralytics.yolo.utils.downloads.download ### ::: ultralytics.yolo.utils.downloads.download
<br><br> <br><br>

@ -3,7 +3,7 @@ description: Learn about HUBModelError in Ultralytics YOLO Docs. Resolve the err
keywords: HUBModelError, Ultralytics YOLO, YOLO Documentation, Object detection errors, YOLO Errors, HUBModelError Solutions keywords: HUBModelError, Ultralytics YOLO, YOLO Documentation, Object detection errors, YOLO Errors, HUBModelError Solutions
--- ---
# HUBModelError ## HUBModelError
--- ---
:::ultralytics.yolo.utils.errors.HUBModelError ### ::: ultralytics.yolo.utils.errors.HUBModelError
<br><br> <br><br>

@ -3,37 +3,37 @@ description: 'Learn about Ultralytics YOLO files and directory utilities: Workin
keywords: YOLO, object detection, file utils, file age, file size, working directory, make directories, Ultralytics Docs keywords: YOLO, object detection, file utils, file age, file size, working directory, make directories, Ultralytics Docs
--- ---
# WorkingDirectory ## WorkingDirectory
--- ---
:::ultralytics.yolo.utils.files.WorkingDirectory ### ::: ultralytics.yolo.utils.files.WorkingDirectory
<br><br> <br><br>
# increment_path ## increment_path
--- ---
:::ultralytics.yolo.utils.files.increment_path ### ::: ultralytics.yolo.utils.files.increment_path
<br><br> <br><br>
# file_age ## file_age
--- ---
:::ultralytics.yolo.utils.files.file_age ### ::: ultralytics.yolo.utils.files.file_age
<br><br> <br><br>
# file_date ## file_date
--- ---
:::ultralytics.yolo.utils.files.file_date ### ::: ultralytics.yolo.utils.files.file_date
<br><br> <br><br>
# file_size ## file_size
--- ---
:::ultralytics.yolo.utils.files.file_size ### ::: ultralytics.yolo.utils.files.file_size
<br><br> <br><br>
# get_latest_run ## get_latest_run
--- ---
:::ultralytics.yolo.utils.files.get_latest_run ### ::: ultralytics.yolo.utils.files.get_latest_run
<br><br> <br><br>
# make_dirs ## make_dirs
--- ---
:::ultralytics.yolo.utils.files.make_dirs ### ::: ultralytics.yolo.utils.files.make_dirs
<br><br> <br><br>

@ -3,17 +3,17 @@ description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO
keywords: Ultralytics, YOLO, Bboxes, _ntuple, object detection, instance segmentation keywords: Ultralytics, YOLO, Bboxes, _ntuple, object detection, instance segmentation
--- ---
# Bboxes ## Bboxes
--- ---
:::ultralytics.yolo.utils.instance.Bboxes ### ::: ultralytics.yolo.utils.instance.Bboxes
<br><br> <br><br>
# Instances ## Instances
--- ---
:::ultralytics.yolo.utils.instance.Instances ### ::: ultralytics.yolo.utils.instance.Instances
<br><br> <br><br>
# _ntuple ## _ntuple
--- ---
:::ultralytics.yolo.utils.instance._ntuple ### ::: ultralytics.yolo.utils.instance._ntuple
<br><br> <br><br>

@ -3,42 +3,42 @@ description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO fo
keywords: Ultralytics, YOLO, loss functions, object detection, keypoint detection, segmentation, classification keywords: Ultralytics, YOLO, loss functions, object detection, keypoint detection, segmentation, classification
--- ---
# VarifocalLoss ## VarifocalLoss
--- ---
:::ultralytics.yolo.utils.loss.VarifocalLoss ### ::: ultralytics.yolo.utils.loss.VarifocalLoss
<br><br> <br><br>
# FocalLoss ## FocalLoss
--- ---
:::ultralytics.yolo.utils.loss.FocalLoss ### ::: ultralytics.yolo.utils.loss.FocalLoss
<br><br> <br><br>
# BboxLoss ## BboxLoss
--- ---
:::ultralytics.yolo.utils.loss.BboxLoss ### ::: ultralytics.yolo.utils.loss.BboxLoss
<br><br> <br><br>
# KeypointLoss ## KeypointLoss
--- ---
:::ultralytics.yolo.utils.loss.KeypointLoss ### ::: ultralytics.yolo.utils.loss.KeypointLoss
<br><br> <br><br>
# v8DetectionLoss ## v8DetectionLoss
--- ---
:::ultralytics.yolo.utils.loss.v8DetectionLoss ### ::: ultralytics.yolo.utils.loss.v8DetectionLoss
<br><br> <br><br>
# v8SegmentationLoss ## v8SegmentationLoss
--- ---
:::ultralytics.yolo.utils.loss.v8SegmentationLoss ### ::: ultralytics.yolo.utils.loss.v8SegmentationLoss
<br><br> <br><br>
# v8PoseLoss ## v8PoseLoss
--- ---
:::ultralytics.yolo.utils.loss.v8PoseLoss ### ::: ultralytics.yolo.utils.loss.v8PoseLoss
<br><br> <br><br>
# v8ClassificationLoss ## v8ClassificationLoss
--- ---
:::ultralytics.yolo.utils.loss.v8ClassificationLoss ### ::: ultralytics.yolo.utils.loss.v8ClassificationLoss
<br><br> <br><br>

@ -3,92 +3,92 @@ description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, Clas
keywords: YOLOv5, metrics, losses, confusion matrix, detection metrics, pose metrics, classification metrics, intersection over area, intersection over union, keypoint intersection over union, average precision, per class average precision, Ultralytics Docs keywords: YOLOv5, metrics, losses, confusion matrix, detection metrics, pose metrics, classification metrics, intersection over area, intersection over union, keypoint intersection over union, average precision, per class average precision, Ultralytics Docs
--- ---
# ConfusionMatrix ## ConfusionMatrix
--- ---
:::ultralytics.yolo.utils.metrics.ConfusionMatrix ### ::: ultralytics.yolo.utils.metrics.ConfusionMatrix
<br><br> <br><br>
# Metric ## Metric
--- ---
:::ultralytics.yolo.utils.metrics.Metric ### ::: ultralytics.yolo.utils.metrics.Metric
<br><br> <br><br>
# DetMetrics ## DetMetrics
--- ---
:::ultralytics.yolo.utils.metrics.DetMetrics ### ::: ultralytics.yolo.utils.metrics.DetMetrics
<br><br> <br><br>
# SegmentMetrics ## SegmentMetrics
--- ---
:::ultralytics.yolo.utils.metrics.SegmentMetrics ### ::: ultralytics.yolo.utils.metrics.SegmentMetrics
<br><br> <br><br>
# PoseMetrics ## PoseMetrics
--- ---
:::ultralytics.yolo.utils.metrics.PoseMetrics ### ::: ultralytics.yolo.utils.metrics.PoseMetrics
<br><br> <br><br>
# ClassifyMetrics ## ClassifyMetrics
--- ---
:::ultralytics.yolo.utils.metrics.ClassifyMetrics ### ::: ultralytics.yolo.utils.metrics.ClassifyMetrics
<br><br> <br><br>
# box_area ## box_area
--- ---
:::ultralytics.yolo.utils.metrics.box_area ### ::: ultralytics.yolo.utils.metrics.box_area
<br><br> <br><br>
# bbox_ioa ## bbox_ioa
--- ---
:::ultralytics.yolo.utils.metrics.bbox_ioa ### ::: ultralytics.yolo.utils.metrics.bbox_ioa
<br><br> <br><br>
# box_iou ## box_iou
--- ---
:::ultralytics.yolo.utils.metrics.box_iou ### ::: ultralytics.yolo.utils.metrics.box_iou
<br><br> <br><br>
# bbox_iou ## bbox_iou
--- ---
:::ultralytics.yolo.utils.metrics.bbox_iou ### ::: ultralytics.yolo.utils.metrics.bbox_iou
<br><br> <br><br>
# mask_iou ## mask_iou
--- ---
:::ultralytics.yolo.utils.metrics.mask_iou ### ::: ultralytics.yolo.utils.metrics.mask_iou
<br><br> <br><br>
# kpt_iou ## kpt_iou
--- ---
:::ultralytics.yolo.utils.metrics.kpt_iou ### ::: ultralytics.yolo.utils.metrics.kpt_iou
<br><br> <br><br>
# smooth_BCE ## smooth_BCE
--- ---
:::ultralytics.yolo.utils.metrics.smooth_BCE ### ::: ultralytics.yolo.utils.metrics.smooth_BCE
<br><br> <br><br>
# smooth ## smooth
--- ---
:::ultralytics.yolo.utils.metrics.smooth ### ::: ultralytics.yolo.utils.metrics.smooth
<br><br> <br><br>
# plot_pr_curve ## plot_pr_curve
--- ---
:::ultralytics.yolo.utils.metrics.plot_pr_curve ### ::: ultralytics.yolo.utils.metrics.plot_pr_curve
<br><br> <br><br>
# plot_mc_curve ## plot_mc_curve
--- ---
:::ultralytics.yolo.utils.metrics.plot_mc_curve ### ::: ultralytics.yolo.utils.metrics.plot_mc_curve
<br><br> <br><br>
# compute_ap ## compute_ap
--- ---
:::ultralytics.yolo.utils.metrics.compute_ap ### ::: ultralytics.yolo.utils.metrics.compute_ap
<br><br> <br><br>
# ap_per_class ## ap_per_class
--- ---
:::ultralytics.yolo.utils.metrics.ap_per_class ### ::: ultralytics.yolo.utils.metrics.ap_per_class
<br><br> <br><br>

@ -3,137 +3,137 @@ description: Learn about various utility functions in Ultralytics YOLO, includin
keywords: Ultralytics, YOLO, Utils Ops, Functions, coco80_to_coco91_class, scale_boxes, non_max_suppression, clip_coords, xyxy2xywh, xywhn2xyxy, xyn2xy, xyxy2ltwh, ltwh2xyxy, resample_segments, process_mask_upsample, process_mask_native, masks2segments, clean_str keywords: Ultralytics, YOLO, Utils Ops, Functions, coco80_to_coco91_class, scale_boxes, non_max_suppression, clip_coords, xyxy2xywh, xywhn2xyxy, xyn2xy, xyxy2ltwh, ltwh2xyxy, resample_segments, process_mask_upsample, process_mask_native, masks2segments, clean_str
--- ---
# Profile ## Profile
--- ---
:::ultralytics.yolo.utils.ops.Profile ### ::: ultralytics.yolo.utils.ops.Profile
<br><br> <br><br>
# coco80_to_coco91_class ## coco80_to_coco91_class
--- ---
:::ultralytics.yolo.utils.ops.coco80_to_coco91_class ### ::: ultralytics.yolo.utils.ops.coco80_to_coco91_class
<br><br> <br><br>
# segment2box ## segment2box
--- ---
:::ultralytics.yolo.utils.ops.segment2box ### ::: ultralytics.yolo.utils.ops.segment2box
<br><br> <br><br>
# scale_boxes ## scale_boxes
--- ---
:::ultralytics.yolo.utils.ops.scale_boxes ### ::: ultralytics.yolo.utils.ops.scale_boxes
<br><br> <br><br>
# make_divisible ## make_divisible
--- ---
:::ultralytics.yolo.utils.ops.make_divisible ### ::: ultralytics.yolo.utils.ops.make_divisible
<br><br> <br><br>
# non_max_suppression ## non_max_suppression
--- ---
:::ultralytics.yolo.utils.ops.non_max_suppression ### ::: ultralytics.yolo.utils.ops.non_max_suppression
<br><br> <br><br>
# clip_boxes ## clip_boxes
--- ---
:::ultralytics.yolo.utils.ops.clip_boxes ### ::: ultralytics.yolo.utils.ops.clip_boxes
<br><br> <br><br>
# clip_coords ## clip_coords
--- ---
:::ultralytics.yolo.utils.ops.clip_coords ### ::: ultralytics.yolo.utils.ops.clip_coords
<br><br> <br><br>
# scale_image ## scale_image
--- ---
:::ultralytics.yolo.utils.ops.scale_image ### ::: ultralytics.yolo.utils.ops.scale_image
<br><br> <br><br>
# xyxy2xywh ## xyxy2xywh
--- ---
:::ultralytics.yolo.utils.ops.xyxy2xywh ### ::: ultralytics.yolo.utils.ops.xyxy2xywh
<br><br> <br><br>
# xywh2xyxy ## xywh2xyxy
--- ---
:::ultralytics.yolo.utils.ops.xywh2xyxy ### ::: ultralytics.yolo.utils.ops.xywh2xyxy
<br><br> <br><br>
# xywhn2xyxy ## xywhn2xyxy
--- ---
:::ultralytics.yolo.utils.ops.xywhn2xyxy ### ::: ultralytics.yolo.utils.ops.xywhn2xyxy
<br><br> <br><br>
# xyxy2xywhn ## xyxy2xywhn
--- ---
:::ultralytics.yolo.utils.ops.xyxy2xywhn ### ::: ultralytics.yolo.utils.ops.xyxy2xywhn
<br><br> <br><br>
# xyn2xy ## xyn2xy
--- ---
:::ultralytics.yolo.utils.ops.xyn2xy ### ::: ultralytics.yolo.utils.ops.xyn2xy
<br><br> <br><br>
# xywh2ltwh ## xywh2ltwh
--- ---
:::ultralytics.yolo.utils.ops.xywh2ltwh ### ::: ultralytics.yolo.utils.ops.xywh2ltwh
<br><br> <br><br>
# xyxy2ltwh ## xyxy2ltwh
--- ---
:::ultralytics.yolo.utils.ops.xyxy2ltwh ### ::: ultralytics.yolo.utils.ops.xyxy2ltwh
<br><br> <br><br>
# ltwh2xywh ## ltwh2xywh
--- ---
:::ultralytics.yolo.utils.ops.ltwh2xywh ### ::: ultralytics.yolo.utils.ops.ltwh2xywh
<br><br> <br><br>
# ltwh2xyxy ## ltwh2xyxy
--- ---
:::ultralytics.yolo.utils.ops.ltwh2xyxy ### ::: ultralytics.yolo.utils.ops.ltwh2xyxy
<br><br> <br><br>
# segments2boxes ## segments2boxes
--- ---
:::ultralytics.yolo.utils.ops.segments2boxes ### ::: ultralytics.yolo.utils.ops.segments2boxes
<br><br> <br><br>
# resample_segments ## resample_segments
--- ---
:::ultralytics.yolo.utils.ops.resample_segments ### ::: ultralytics.yolo.utils.ops.resample_segments
<br><br> <br><br>
# crop_mask ## crop_mask
--- ---
:::ultralytics.yolo.utils.ops.crop_mask ### ::: ultralytics.yolo.utils.ops.crop_mask
<br><br> <br><br>
# process_mask_upsample ## process_mask_upsample
--- ---
:::ultralytics.yolo.utils.ops.process_mask_upsample ### ::: ultralytics.yolo.utils.ops.process_mask_upsample
<br><br> <br><br>
# process_mask ## process_mask
--- ---
:::ultralytics.yolo.utils.ops.process_mask ### ::: ultralytics.yolo.utils.ops.process_mask
<br><br> <br><br>
# process_mask_native ## process_mask_native
--- ---
:::ultralytics.yolo.utils.ops.process_mask_native ### ::: ultralytics.yolo.utils.ops.process_mask_native
<br><br> <br><br>
# scale_coords ## scale_coords
--- ---
:::ultralytics.yolo.utils.ops.scale_coords ### ::: ultralytics.yolo.utils.ops.scale_coords
<br><br> <br><br>
# masks2segments ## masks2segments
--- ---
:::ultralytics.yolo.utils.ops.masks2segments ### ::: ultralytics.yolo.utils.ops.masks2segments
<br><br> <br><br>
# clean_str ## clean_str
--- ---
:::ultralytics.yolo.utils.ops.clean_str ### ::: ultralytics.yolo.utils.ops.clean_str
<br><br> <br><br>

@ -3,22 +3,22 @@ description: Learn how to use the Ultralytics YOLO Utils package's imread and im
keywords: imread, imshow, ultralytics, YOLO, image files, torchsave keywords: imread, imshow, ultralytics, YOLO, image files, torchsave
--- ---
# imread ## imread
--- ---
:::ultralytics.yolo.utils.patches.imread ### ::: ultralytics.yolo.utils.patches.imread
<br><br> <br><br>
# imwrite ## imwrite
--- ---
:::ultralytics.yolo.utils.patches.imwrite ### ::: ultralytics.yolo.utils.patches.imwrite
<br><br> <br><br>
# imshow ## imshow
--- ---
:::ultralytics.yolo.utils.patches.imshow ### ::: ultralytics.yolo.utils.patches.imshow
<br><br> <br><br>
# torch_save ## torch_save
--- ---
:::ultralytics.yolo.utils.patches.torch_save ### ::: ultralytics.yolo.utils.patches.torch_save
<br><br> <br><br>

@ -3,42 +3,42 @@ description: 'Discover the power of YOLO''s plotting functions: Colors, Labels a
keywords: YOLO, object detection, plotting, visualization, annotator, save one box, plot results, feature visualization, Ultralytics keywords: YOLO, object detection, plotting, visualization, annotator, save one box, plot results, feature visualization, Ultralytics
--- ---
# Colors ## Colors
--- ---
:::ultralytics.yolo.utils.plotting.Colors ### ::: ultralytics.yolo.utils.plotting.Colors
<br><br> <br><br>
# Annotator ## Annotator
--- ---
:::ultralytics.yolo.utils.plotting.Annotator ### ::: ultralytics.yolo.utils.plotting.Annotator
<br><br> <br><br>
# plot_labels ## plot_labels
--- ---
:::ultralytics.yolo.utils.plotting.plot_labels ### ::: ultralytics.yolo.utils.plotting.plot_labels
<br><br> <br><br>
# save_one_box ## save_one_box
--- ---
:::ultralytics.yolo.utils.plotting.save_one_box ### ::: ultralytics.yolo.utils.plotting.save_one_box
<br><br> <br><br>
# plot_images ## plot_images
--- ---
:::ultralytics.yolo.utils.plotting.plot_images ### ::: ultralytics.yolo.utils.plotting.plot_images
<br><br> <br><br>
# plot_results ## plot_results
--- ---
:::ultralytics.yolo.utils.plotting.plot_results ### ::: ultralytics.yolo.utils.plotting.plot_results
<br><br> <br><br>
# output_to_target ## output_to_target
--- ---
:::ultralytics.yolo.utils.plotting.output_to_target ### ::: ultralytics.yolo.utils.plotting.output_to_target
<br><br> <br><br>
# feature_visualization ## feature_visualization
--- ---
:::ultralytics.yolo.utils.plotting.feature_visualization ### ::: ultralytics.yolo.utils.plotting.feature_visualization
<br><br> <br><br>

@ -3,32 +3,32 @@ description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, sel
keywords: Ultrayltics, YOLO, select_candidates_in_gts, make_anchor, bbox2dist, object detection, tracking keywords: Ultrayltics, YOLO, select_candidates_in_gts, make_anchor, bbox2dist, object detection, tracking
--- ---
# TaskAlignedAssigner ## TaskAlignedAssigner
--- ---
:::ultralytics.yolo.utils.tal.TaskAlignedAssigner ### ::: ultralytics.yolo.utils.tal.TaskAlignedAssigner
<br><br> <br><br>
# select_candidates_in_gts ## select_candidates_in_gts
--- ---
:::ultralytics.yolo.utils.tal.select_candidates_in_gts ### ::: ultralytics.yolo.utils.tal.select_candidates_in_gts
<br><br> <br><br>
# select_highest_overlaps ## select_highest_overlaps
--- ---
:::ultralytics.yolo.utils.tal.select_highest_overlaps ### ::: ultralytics.yolo.utils.tal.select_highest_overlaps
<br><br> <br><br>
# make_anchors ## make_anchors
--- ---
:::ultralytics.yolo.utils.tal.make_anchors ### ::: ultralytics.yolo.utils.tal.make_anchors
<br><br> <br><br>
# dist2bbox ## dist2bbox
--- ---
:::ultralytics.yolo.utils.tal.dist2bbox ### ::: ultralytics.yolo.utils.tal.dist2bbox
<br><br> <br><br>
# bbox2dist ## bbox2dist
--- ---
:::ultralytics.yolo.utils.tal.bbox2dist ### ::: ultralytics.yolo.utils.tal.bbox2dist
<br><br> <br><br>

@ -3,132 +3,132 @@ description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils fu
keywords: Ultralytics YOLO, Torch, Utils, Pytorch, Object Detection keywords: Ultralytics YOLO, Torch, Utils, Pytorch, Object Detection
--- ---
# ModelEMA ## ModelEMA
--- ---
:::ultralytics.yolo.utils.torch_utils.ModelEMA ### ::: ultralytics.yolo.utils.torch_utils.ModelEMA
<br><br> <br><br>
# EarlyStopping ## EarlyStopping
--- ---
:::ultralytics.yolo.utils.torch_utils.EarlyStopping ### ::: ultralytics.yolo.utils.torch_utils.EarlyStopping
<br><br> <br><br>
# torch_distributed_zero_first ## torch_distributed_zero_first
--- ---
:::ultralytics.yolo.utils.torch_utils.torch_distributed_zero_first ### ::: ultralytics.yolo.utils.torch_utils.torch_distributed_zero_first
<br><br> <br><br>
# smart_inference_mode ## smart_inference_mode
--- ---
:::ultralytics.yolo.utils.torch_utils.smart_inference_mode ### ::: ultralytics.yolo.utils.torch_utils.smart_inference_mode
<br><br> <br><br>
# select_device ## select_device
--- ---
:::ultralytics.yolo.utils.torch_utils.select_device ### ::: ultralytics.yolo.utils.torch_utils.select_device
<br><br> <br><br>
# time_sync ## time_sync
--- ---
:::ultralytics.yolo.utils.torch_utils.time_sync ### ::: ultralytics.yolo.utils.torch_utils.time_sync
<br><br> <br><br>
# fuse_conv_and_bn ## fuse_conv_and_bn
--- ---
:::ultralytics.yolo.utils.torch_utils.fuse_conv_and_bn ### ::: ultralytics.yolo.utils.torch_utils.fuse_conv_and_bn
<br><br> <br><br>
# fuse_deconv_and_bn ## fuse_deconv_and_bn
--- ---
:::ultralytics.yolo.utils.torch_utils.fuse_deconv_and_bn ### ::: ultralytics.yolo.utils.torch_utils.fuse_deconv_and_bn
<br><br> <br><br>
# model_info ## model_info
--- ---
:::ultralytics.yolo.utils.torch_utils.model_info ### ::: ultralytics.yolo.utils.torch_utils.model_info
<br><br> <br><br>
# get_num_params ## get_num_params
--- ---
:::ultralytics.yolo.utils.torch_utils.get_num_params ### ::: ultralytics.yolo.utils.torch_utils.get_num_params
<br><br> <br><br>
# get_num_gradients ## get_num_gradients
--- ---
:::ultralytics.yolo.utils.torch_utils.get_num_gradients ### ::: ultralytics.yolo.utils.torch_utils.get_num_gradients
<br><br> <br><br>
# model_info_for_loggers ## model_info_for_loggers
--- ---
:::ultralytics.yolo.utils.torch_utils.model_info_for_loggers ### ::: ultralytics.yolo.utils.torch_utils.model_info_for_loggers
<br><br> <br><br>
# get_flops ## get_flops
--- ---
:::ultralytics.yolo.utils.torch_utils.get_flops ### ::: ultralytics.yolo.utils.torch_utils.get_flops
<br><br> <br><br>
# get_flops_with_torch_profiler ## get_flops_with_torch_profiler
--- ---
:::ultralytics.yolo.utils.torch_utils.get_flops_with_torch_profiler ### ::: ultralytics.yolo.utils.torch_utils.get_flops_with_torch_profiler
<br><br> <br><br>
# initialize_weights ## initialize_weights
--- ---
:::ultralytics.yolo.utils.torch_utils.initialize_weights ### ::: ultralytics.yolo.utils.torch_utils.initialize_weights
<br><br> <br><br>
# scale_img ## scale_img
--- ---
:::ultralytics.yolo.utils.torch_utils.scale_img ### ::: ultralytics.yolo.utils.torch_utils.scale_img
<br><br> <br><br>
# make_divisible ## make_divisible
--- ---
:::ultralytics.yolo.utils.torch_utils.make_divisible ### ::: ultralytics.yolo.utils.torch_utils.make_divisible
<br><br> <br><br>
# copy_attr ## copy_attr
--- ---
:::ultralytics.yolo.utils.torch_utils.copy_attr ### ::: ultralytics.yolo.utils.torch_utils.copy_attr
<br><br> <br><br>
# get_latest_opset ## get_latest_opset
--- ---
:::ultralytics.yolo.utils.torch_utils.get_latest_opset ### ::: ultralytics.yolo.utils.torch_utils.get_latest_opset
<br><br> <br><br>
# intersect_dicts ## intersect_dicts
--- ---
:::ultralytics.yolo.utils.torch_utils.intersect_dicts ### ::: ultralytics.yolo.utils.torch_utils.intersect_dicts
<br><br> <br><br>
# is_parallel ## is_parallel
--- ---
:::ultralytics.yolo.utils.torch_utils.is_parallel ### ::: ultralytics.yolo.utils.torch_utils.is_parallel
<br><br> <br><br>
# de_parallel ## de_parallel
--- ---
:::ultralytics.yolo.utils.torch_utils.de_parallel ### ::: ultralytics.yolo.utils.torch_utils.de_parallel
<br><br> <br><br>
# one_cycle ## one_cycle
--- ---
:::ultralytics.yolo.utils.torch_utils.one_cycle ### ::: ultralytics.yolo.utils.torch_utils.one_cycle
<br><br> <br><br>
# init_seeds ## init_seeds
--- ---
:::ultralytics.yolo.utils.torch_utils.init_seeds ### ::: ultralytics.yolo.utils.torch_utils.init_seeds
<br><br> <br><br>
# strip_optimizer ## strip_optimizer
--- ---
:::ultralytics.yolo.utils.torch_utils.strip_optimizer ### ::: ultralytics.yolo.utils.torch_utils.strip_optimizer
<br><br> <br><br>
# profile ## profile
--- ---
:::ultralytics.yolo.utils.torch_utils.profile ### ::: ultralytics.yolo.utils.torch_utils.profile
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Learn how to use ClassificationPredictor in Ultralytics YOLOv8 for
keywords: Ultralytics, YOLO, v8, Classify Predictor, object detection, classification, computer vision keywords: Ultralytics, YOLO, v8, Classify Predictor, object detection, classification, computer vision
--- ---
# ClassificationPredictor ## ClassificationPredictor
--- ---
:::ultralytics.yolo.v8.classify.predict.ClassificationPredictor ### ::: ultralytics.yolo.v8.classify.predict.ClassificationPredictor
<br><br> <br><br>
# predict ## predict
--- ---
:::ultralytics.yolo.v8.classify.predict.predict ### ::: ultralytics.yolo.v8.classify.predict.predict
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Train a custom image classification model using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, object detection, classification, training, API keywords: Ultralytics, YOLOv8, object detection, classification, training, API
--- ---
# ClassificationTrainer ## ClassificationTrainer
--- ---
:::ultralytics.yolo.v8.classify.train.ClassificationTrainer ### ::: ultralytics.yolo.v8.classify.train.ClassificationTrainer
<br><br> <br><br>
# train ## train
--- ---
:::ultralytics.yolo.v8.classify.train.train ### ::: ultralytics.yolo.v8.classify.train.train
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Ensure model classification accuracy with Ultralytics YOLO's Classi
keywords: ClassificationValidator, Ultralytics YOLO, Validation, Data Science, Deep Learning keywords: ClassificationValidator, Ultralytics YOLO, Validation, Data Science, Deep Learning
--- ---
# ClassificationValidator ## ClassificationValidator
--- ---
:::ultralytics.yolo.v8.classify.val.ClassificationValidator ### ::: ultralytics.yolo.v8.classify.val.ClassificationValidator
<br><br> <br><br>
# val ## val
--- ---
:::ultralytics.yolo.v8.classify.val.val ### ::: ultralytics.yolo.v8.classify.val.val
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Detect and predict objects in images and videos using the Ultralyti
keywords: detectionpredictor, ultralytics yolo, object detection, neural network, machine learning keywords: detectionpredictor, ultralytics yolo, object detection, neural network, machine learning
--- ---
# DetectionPredictor ## DetectionPredictor
--- ---
:::ultralytics.yolo.v8.detect.predict.DetectionPredictor ### ::: ultralytics.yolo.v8.detect.predict.DetectionPredictor
<br><br> <br><br>
# predict ## predict
--- ---
:::ultralytics.yolo.v8.detect.predict.predict ### ::: ultralytics.yolo.v8.detect.predict.predict
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Train and optimize custom object detection models with Ultralytics
keywords: DetectionTrainer, Ultralytics YOLO, custom object detection, train models, AI applications keywords: DetectionTrainer, Ultralytics YOLO, custom object detection, train models, AI applications
--- ---
# DetectionTrainer ## DetectionTrainer
--- ---
:::ultralytics.yolo.v8.detect.train.DetectionTrainer ### ::: ultralytics.yolo.v8.detect.train.DetectionTrainer
<br><br> <br><br>
# train ## train
--- ---
:::ultralytics.yolo.v8.detect.train.train ### ::: ultralytics.yolo.v8.detect.train.train
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Validate YOLOv5 detections using this PyTorch module. Ensure model
keywords: detection, validator, YOLOv5, object detection, model improvement, Ultralytics Docs keywords: detection, validator, YOLOv5, object detection, model improvement, Ultralytics Docs
--- ---
# DetectionValidator ## DetectionValidator
--- ---
:::ultralytics.yolo.v8.detect.val.DetectionValidator ### ::: ultralytics.yolo.v8.detect.val.DetectionValidator
<br><br> <br><br>
# val ## val
--- ---
:::ultralytics.yolo.v8.detect.val.val ### ::: ultralytics.yolo.v8.detect.val.val
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Predict human pose coordinates and confidence scores using YOLOv5.
keywords: Ultralytics, YOLO, v8, documentation, PosePredictor, pose prediction, pose estimation, predict method keywords: Ultralytics, YOLO, v8, documentation, PosePredictor, pose prediction, pose estimation, predict method
--- ---
# PosePredictor ## PosePredictor
--- ---
:::ultralytics.yolo.v8.pose.predict.PosePredictor ### ::: ultralytics.yolo.v8.pose.predict.PosePredictor
<br><br> <br><br>
# predict ## predict
--- ---
:::ultralytics.yolo.v8.pose.predict.predict ### ::: ultralytics.yolo.v8.pose.predict.predict
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Boost posture detection using PoseTrainer and train models using tr
keywords: PoseTrainer, human pose models, deep learning, computer vision, Ultralytics YOLO, v8 keywords: PoseTrainer, human pose models, deep learning, computer vision, Ultralytics YOLO, v8
--- ---
# PoseTrainer ## PoseTrainer
--- ---
:::ultralytics.yolo.v8.pose.train.PoseTrainer ### ::: ultralytics.yolo.v8.pose.train.PoseTrainer
<br><br> <br><br>
# train ## train
--- ---
:::ultralytics.yolo.v8.pose.train.train ### ::: ultralytics.yolo.v8.pose.train.train
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Ensure proper human poses in images with YOLOv8 Pose Validation, pa
keywords: PoseValidator, Ultralytics YOLO, object detection, pose analysis, validation keywords: PoseValidator, Ultralytics YOLO, object detection, pose analysis, validation
--- ---
# PoseValidator ## PoseValidator
--- ---
:::ultralytics.yolo.v8.pose.val.PoseValidator ### ::: ultralytics.yolo.v8.pose.val.PoseValidator
<br><br> <br><br>
# val ## val
--- ---
:::ultralytics.yolo.v8.pose.val.val ### ::: ultralytics.yolo.v8.pose.val.val
<br><br> <br><br>

@ -3,12 +3,12 @@ description: '"Use SegmentationPredictor in YOLOv8 for efficient object detectio
keywords: Ultralytics YOLO, SegmentationPredictor, object detection, segmentation masks, predict keywords: Ultralytics YOLO, SegmentationPredictor, object detection, segmentation masks, predict
--- ---
# SegmentationPredictor ## SegmentationPredictor
--- ---
:::ultralytics.yolo.v8.segment.predict.SegmentationPredictor ### ::: ultralytics.yolo.v8.segment.predict.SegmentationPredictor
<br><br> <br><br>
# predict ## predict
--- ---
:::ultralytics.yolo.v8.segment.predict.predict ### ::: ultralytics.yolo.v8.segment.predict.predict
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 fo
keywords: SegmentationTrainer, Ultralytics YOLO, object detection, segmentation, train, tutorial, guide, code examples keywords: SegmentationTrainer, Ultralytics YOLO, object detection, segmentation, train, tutorial, guide, code examples
--- ---
# SegmentationTrainer ## SegmentationTrainer
--- ---
:::ultralytics.yolo.v8.segment.train.SegmentationTrainer ### ::: ultralytics.yolo.v8.segment.train.SegmentationTrainer
<br><br> <br><br>
# train ## train
--- ---
:::ultralytics.yolo.v8.segment.train.train ### ::: ultralytics.yolo.v8.segment.train.train
<br><br> <br><br>

@ -3,12 +3,12 @@ description: Ensure segmentation quality on large datasets with SegmentationVali
keywords: SegmentationValidator, YOLOv8, Ultralytics Docs, segmentation model, validation keywords: SegmentationValidator, YOLOv8, Ultralytics Docs, segmentation model, validation
--- ---
# SegmentationValidator ## SegmentationValidator
--- ---
:::ultralytics.yolo.v8.segment.val.SegmentationValidator ### ::: ultralytics.yolo.v8.segment.val.SegmentationValidator
<br><br> <br><br>
# val ## val
--- ---
:::ultralytics.yolo.v8.segment.val.val ### ::: ultralytics.yolo.v8.segment.val.val
<br><br> <br><br>

@ -33,6 +33,7 @@ th, td {
/* Table format like GitHub ----------------------------------------------------------------------------------------- */ /* Table format like GitHub ----------------------------------------------------------------------------------------- */
/* Code block vertical scroll */ /* Code block vertical scroll */
.md-typeset pre > code { div.highlight {
max-height: 20rem; max-height: 20rem;
overflow-y: auto; /* for adding a scrollbar when needed */
} }

@ -54,8 +54,8 @@ class AutoBackend(nn.Module):
Args: Args:
weights (str): The path to the weights file. Default: 'yolov8n.pt' weights (str): The path to the weights file. Default: 'yolov8n.pt'
device (torch.device): The device to run the model on. device (torch.device): The device to run the model on.
dnn (bool): Use OpenCV's DNN module for inference if True, defaults to False. dnn (bool): Use OpenCV DNN module for inference if True, defaults to False.
data (str), (Path): Additional data.yaml file for class names, optional data (str | Path | optional): Additional data.yaml file for class names.
fp16 (bool): If True, use half precision. Default: False fp16 (bool): If True, use half precision. Default: False
fuse (bool): Whether to fuse the model or not. Default: True fuse (bool): Whether to fuse the model or not. Default: True
verbose (bool): Whether to run in verbose mode or not. Default: True verbose (bool): Whether to run in verbose mode or not. Default: True

@ -124,7 +124,8 @@ class AutoShape(nn.Module):
class Detections: class Detections:
# YOLOv8 detections class for inference results """ YOLOv8 detections class for inference results"""
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None): def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
"""Initialize object attributes for YOLO detection results.""" """Initialize object attributes for YOLO detection results."""
super().__init__() super().__init__()

@ -190,7 +190,7 @@ class BaseModel(nn.Module):
"""Load the weights into the model. """Load the weights into the model.
Args: Args:
weights (dict) or (torch.nn.Module): The pre-trained weights to be loaded. weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
verbose (bool, optional): Whether to log the transfer progress. Defaults to True. verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
""" """
model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts
@ -701,7 +701,7 @@ def guess_model_scale(model_path):
which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string. which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string.
Args: Args:
model_path (str) or (Path): The path to the YOLO model's YAML file. model_path (str | Path): The path to the YOLO model's YAML file.
Returns: Returns:
(str): The size character of the model's scale, which can be n, s, m, l, or x. (str): The size character of the model's scale, which can be n, s, m, l, or x.
@ -717,7 +717,7 @@ def guess_model_task(model):
Guess the task of a PyTorch model from its architecture or configuration. Guess the task of a PyTorch model from its architecture or configuration.
Args: Args:
model (nn.Module) or (dict): PyTorch model or model configuration in YAML format. model (nn.Module | dict): PyTorch model or model configuration in YAML format.
Returns: Returns:
(str): Task of the model ('detect', 'segment', 'classify', 'pose'). (str): Task of the model ('detect', 'segment', 'classify', 'pose').

@ -80,8 +80,8 @@ def cfg2dict(cfg):
""" """
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object. Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
Inputs: Args:
cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary. cfg (str | Path | SimpleNamespace): Configuration object to be converted to a dictionary.
Returns: Returns:
cfg (dict): Configuration object in dictionary format. cfg (dict): Configuration object in dictionary format.
@ -98,8 +98,8 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, ove
Load and merge configuration data from a file or dictionary. Load and merge configuration data from a file or dictionary.
Args: Args:
cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data. cfg (str | Path | Dict | SimpleNamespace): Configuration data.
overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None. overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None.
Returns: Returns:
(SimpleNamespace): Training arguments namespace. (SimpleNamespace): Training arguments namespace.
@ -168,9 +168,9 @@ def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
This function checks for any mismatched keys between a custom configuration list and a base configuration list. This function checks for any mismatched keys between a custom configuration list and a base configuration list.
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program. If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
Inputs: Args:
- custom (Dict): a dictionary of custom configuration options custom (Dict): a dictionary of custom configuration options
- base (Dict): a dictionary of base configuration options base (Dict): a dictionary of base configuration options
""" """
custom = _handle_deprecation(custom) custom = _handle_deprecation(custom)
base, custom = (set(x.keys()) for x in (base, custom)) base, custom = (set(x.keys()) for x in (base, custom))

@ -13,7 +13,7 @@ def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='',
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'.
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'.
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available).
output_dir (str, None, optional): Directory to save the annotated results. output_dir (str | None | optional): Directory to save the annotated results.
Defaults to a 'labels' folder in the same directory as 'data'. Defaults to a 'labels' folder in the same directory as 'data'.
""" """
device = select_device(device) device = select_device(device)

@ -223,7 +223,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
root (str): Dataset path. root (str): Dataset path.
args (Namespace): Argument parser containing dataset related settings. args (Namespace): Argument parser containing dataset related settings.
augment (bool, optional): True if dataset should be augmented, False otherwise. Defaults to False. augment (bool, optional): True if dataset should be augmented, False otherwise. Defaults to False.
cache (Union[bool, str], optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False. cache (bool | str | optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False.
""" """
super().__init__(root=root) super().__init__(root=root)
if augment and args.fraction < 1.0: # reduce training fraction if augment and args.fraction < 1.0: # reduce training fraction

@ -129,7 +129,7 @@ class YOLO:
Args: Args:
cfg (str): model configuration file cfg (str): model configuration file
task (str) or (None): model task task (str | None): model task
verbose (bool): display model info on load verbose (bool): display model info on load
""" """
cfg_dict = yaml_model_load(cfg) cfg_dict = yaml_model_load(cfg)
@ -149,7 +149,7 @@ class YOLO:
Args: Args:
weights (str): model checkpoint to be loaded weights (str): model checkpoint to be loaded
task (str) or (None): model task task (str | None): model task
""" """
suffix = Path(weights).suffix suffix = Path(weights).suffix
if suffix == '.pt': if suffix == '.pt':

@ -355,23 +355,23 @@ class Boxes(BaseTensor):
A class for storing and manipulating detection boxes. A class for storing and manipulating detection boxes.
Args: Args:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6). The last two columns should contain confidence and class values. with shape (num_boxes, 6). The last two columns should contain confidence and class values.
orig_shape (tuple): Original image size, in the format (height, width). orig_shape (tuple): Original image size, in the format (height, width).
Attributes: Attributes:
boxes (torch.Tensor) or (numpy.ndarray): The detection boxes with shape (num_boxes, 6). boxes (torch.Tensor | numpy.ndarray): The detection boxes with shape (num_boxes, 6).
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). orig_shape (torch.Tensor | numpy.ndarray): Original image size, in the format (height, width).
is_track (bool): True if the boxes also include track IDs, False otherwise. is_track (bool): True if the boxes also include track IDs, False otherwise.
Properties: Properties:
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available). id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
data (torch.Tensor): The raw bboxes tensor data (torch.Tensor): The raw bboxes tensor
Methods: Methods:

@ -422,7 +422,7 @@ def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
Check if a directory is writeable. Check if a directory is writeable.
Args: Args:
dir_path (str) or (Path): The path to the directory. dir_path (str | Path): The path to the directory.
Returns: Returns:
(bool): True if the directory is writeable, False otherwise. (bool): True if the directory is writeable, False otherwise.
@ -467,7 +467,7 @@ def get_git_dir():
If the current file is not part of a git repository, returns None. If the current file is not part of a git repository, returns None.
Returns: Returns:
(Path) or (None): Git root directory if found or None if not found. (Path | None): Git root directory if found or None if not found.
""" """
for d in Path(__file__).parents: for d in Path(__file__).parents:
if (d / '.git').is_dir(): if (d / '.git').is_dir():
@ -480,7 +480,7 @@ def get_git_origin_url():
Retrieves the origin URL of a git repository. Retrieves the origin URL of a git repository.
Returns: Returns:
(str) or (None): The origin URL of the git repository. (str | None): The origin URL of the git repository.
""" """
if is_git_dir(): if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError): with contextlib.suppress(subprocess.CalledProcessError):
@ -494,7 +494,7 @@ def get_git_branch():
Returns the current git branch name. If not in a git repository, returns None. Returns the current git branch name. If not in a git repository, returns None.
Returns: Returns:
(str) or (None): The current git branch name. (str | None): The current git branch name.
""" """
if is_git_dir(): if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError): with contextlib.suppress(subprocess.CalledProcessError):

@ -51,13 +51,13 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
Benchmark a YOLO model across different formats for speed and accuracy. Benchmark a YOLO model across different formats for speed and accuracy.
Args: Args:
model (Union[str, Path], optional): Path to the model file or directory. Default is model (str | Path | optional): Path to the model file or directory. Default is
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
imgsz (int, optional): Image size for the benchmark. Default is 160. imgsz (int, optional): Image size for the benchmark. Default is 160.
half (bool, optional): Use half-precision for the model if True. Default is False. half (bool, optional): Use half-precision for the model if True. Default is False.
int8 (bool, optional): Use int8-precision for the model if True. Default is False. int8 (bool, optional): Use int8-precision for the model if True. Default is False.
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
hard_fail (Union[bool, float], optional): If True or a float, assert benchmarks pass with given metric. hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
Default is False. Default is False.
Returns: Returns:

@ -47,7 +47,7 @@ def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value. stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
Args: Args:
imgsz (int) or (cList[int]): Image size. imgsz (int | cList[int]): Image size.
stride (int): Stride value. stride (int): Stride value.
min_dim (int): Minimum number of dimensions. min_dim (int): Minimum number of dimensions.
floor (int): Minimum allowed value for image size. floor (int): Minimum allowed value for image size.

@ -102,7 +102,7 @@ class Bboxes:
def mul(self, scale): def mul(self, scale):
""" """
Args: Args:
scale (tuple) or (list) or (int): the scale for four coords. scale (tuple | list | int): the scale for four coords.
""" """
if isinstance(scale, Number): if isinstance(scale, Number):
scale = to_4tuple(scale) scale = to_4tuple(scale)
@ -116,7 +116,7 @@ class Bboxes:
def add(self, offset): def add(self, offset):
""" """
Args: Args:
offset (tuple) or (list) or (int): the offset for four coords. offset (tuple | list | int): the offset for four coords.
""" """
if isinstance(offset, Number): if isinstance(offset, Number):
offset = to_4tuple(offset) offset = to_4tuple(offset)

@ -123,7 +123,7 @@ def make_divisible(x, divisor):
Args: Args:
x (int): The number to make divisible. x (int): The number to make divisible.
divisor (int) or (torch.Tensor): The divisor. divisor (int | torch.Tensor): The divisor.
Returns: Returns:
(int): The nearest number divisible by the divisor. (int): The nearest number divisible by the divisor.
@ -166,7 +166,7 @@ def non_max_suppression(
list contains the apriori labels for a given image. The list should be in the format list contains the apriori labels for a given image. The list should be in the format
output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2). output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
max_det (int): The maximum number of boxes to keep after NMS. max_det (int): The maximum number of boxes to keep after NMS.
nc (int): (optional) The number of classes output by the model. Any indices after this will be considered masks. nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
max_time_img (float): The maximum time (seconds) for processing one image. max_time_img (float): The maximum time (seconds) for processing one image.
max_nms (int): The maximum number of boxes into torchvision.ops.nms(). max_nms (int): The maximum number of boxes into torchvision.ops.nms().
max_wh (int): The maximum box width and height in pixels max_wh (int): The maximum box width and height in pixels
@ -290,7 +290,7 @@ def clip_coords(coords, shape):
Clip line coordinates to the image boundaries. Clip line coordinates to the image boundaries.
Args: Args:
coords (torch.Tensor) or (numpy.ndarray): A list of line coordinates. coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
shape (tuple): A tuple of integers representing the size of the image in the format (height, width). shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
Returns: Returns:
@ -347,9 +347,9 @@ def xyxy2xywh(x):
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format. Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format.
Args: Args:
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x, y, width, height) format. y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
@ -365,9 +365,9 @@ def xywh2xyxy(x):
top-left corner and (x2, y2) is the bottom-right corner. top-left corner and (x2, y2) is the bottom-right corner.
Args: Args:
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x, y, width, height) format. x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
@ -382,13 +382,13 @@ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
Convert normalized bounding box coordinates to pixel coordinates. Convert normalized bounding box coordinates to pixel coordinates.
Args: Args:
x (np.ndarray) or (torch.Tensor): The bounding box coordinates. x (np.ndarray | torch.Tensor): The bounding box coordinates.
w (int): Width of the image. Defaults to 640 w (int): Width of the image. Defaults to 640
h (int): Height of the image. Defaults to 640 h (int): Height of the image. Defaults to 640
padw (int): Padding width. Defaults to 0 padw (int): Padding width. Defaults to 0
padh (int): Padding height. Defaults to 0 padh (int): Padding height. Defaults to 0
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box. x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
@ -405,13 +405,13 @@ def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
x, y, width and height are normalized to image dimensions x, y, width and height are normalized to image dimensions
Args: Args:
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format. x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
w (int): The width of the image. Defaults to 640 w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640 h (int): The height of the image. Defaults to 640
clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
eps (float): The minimum value of the box's width and height. Defaults to 0.0 eps (float): The minimum value of the box's width and height. Defaults to 0.0
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
""" """
if clip: if clip:
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
@ -428,13 +428,13 @@ def xyn2xy(x, w=640, h=640, padw=0, padh=0):
Convert normalized coordinates to pixel coordinates of shape (n,2) Convert normalized coordinates to pixel coordinates of shape (n,2)
Args: Args:
x (np.ndarray) or (torch.Tensor): The input tensor of normalized bounding box coordinates x (np.ndarray | torch.Tensor): The input tensor of normalized bounding box coordinates
w (int): The width of the image. Defaults to 640 w (int): The width of the image. Defaults to 640
h (int): The height of the image. Defaults to 640 h (int): The height of the image. Defaults to 640
padw (int): The width of the padding. Defaults to 0 padw (int): The width of the padding. Defaults to 0
padh (int): The height of the padding. Defaults to 0 padh (int): The height of the padding. Defaults to 0
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The x and y coordinates of the top left corner of the bounding box y (np.ndarray | torch.Tensor): The x and y coordinates of the top left corner of the bounding box
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = w * x[..., 0] + padw # top left x y[..., 0] = w * x[..., 0] + padw # top left x
@ -447,9 +447,9 @@ def xywh2ltwh(x):
Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates. Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.
Args: Args:
x (np.ndarray) or (torch.Tensor): The input tensor with the bounding box coordinates in the xywh format x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in the xyltwh format y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
@ -462,9 +462,9 @@ def xyxy2ltwh(x):
Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right
Args: Args:
x (np.ndarray) or (torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format
Returns: Returns:
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in the xyltwh format. y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 2] = x[:, 2] - x[:, 0] # width
@ -490,10 +490,10 @@ def ltwh2xyxy(x):
It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
Args: Args:
x (np.ndarray) or (torch.Tensor): the input image x (np.ndarray | torch.Tensor): the input image
Returns: Returns:
y (np.ndarray) or (torch.Tensor): the xyxy coordinates of the bounding boxes. y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
""" """
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 2] = x[:, 2] + x[:, 0] # width y[:, 2] = x[:, 2] + x[:, 0] # width

Loading…
Cancel
Save