Fix keypoints.conf update Results docs (#2977)

This commit is contained in:
Laughing
2023-06-05 04:33:17 +08:00
committed by GitHub
parent a9129fb40e
commit bb5bbc2893
3 changed files with 35 additions and 13 deletions

View File

@ -71,9 +71,9 @@ class Results(SimpleClass):
orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file.
names (dict): A dictionary of class names.
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection.
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
@ -82,10 +82,10 @@ class Results(SimpleClass):
orig_shape (tuple): The original image shape in (height, width) format.
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
names (dict): A dictionary of class names.
path (str): The path to the image file.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
_keys (tuple): A tuple of attribute names for non-empty attributes.
"""
@ -552,7 +552,7 @@ class Keypoints(BaseTensor):
@property
@lru_cache(maxsize=1)
def conf(self):
return self.data[..., 3] if self.has_visible else None
return self.data[..., 2] if self.has_visible else None
class Probs(BaseTensor):