Update YOLOv8-ONNXRuntime-CPP example with GPU inference (#4328)
Signed-off-by: Onuralp SEZER <thunderbirdtr@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
		| @ -5,14 +5,14 @@ This repository features a collection of real-world applications and walkthrough | ||||
| ### Ultralytics YOLO Example Applications | ||||
|  | ||||
| | Title                                                                                                          | Format             | Contributor                                                                               | | ||||
| | -------------------------------------------------------------------------------------------------------------- | ------------------ | --------------------------------------------------- | | ||||
| | -------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------- | | ||||
| | [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference)                                               | C++/ONNX           | [Justas Bartnykas](https://github.com/JustasBart)                                         | | ||||
| | [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python)                                               | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro)                                       | | ||||
| | [YOLOv8 .NET ONNX ImageSharp](https://github.com/dme-compunet/YOLOv8)                                          | C#/ONNX/ImageSharp | [Compunet](https://github.com/dme-compunet)                                               | | ||||
| | [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net)                                       | C# .Net            | [Samuel Stainback](https://github.com/sstainba)                                           | | ||||
| | [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python             | [Lakshantha](https://github.com/lakshanthad)                                              | | ||||
| | [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime)                                                              | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel)                                         | | ||||
| | [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP)                                                             | C++/ONNXRuntime    | [DennisJcy](https://github.com/DennisJcy)           | | ||||
| | [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP)                                                             | C++/ONNXRuntime    | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) | | ||||
| | [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs)                              | C#/ONNX            | [Kayzwer](https://github.com/Kayzwer)                                                     | | ||||
|  | ||||
| ### How to Contribute | ||||
|  | ||||
| @ -17,9 +17,12 @@ include_directories(${OpenCV_INCLUDE_DIRS}) | ||||
|  | ||||
|  | ||||
| # -------------- Compile CUDA for FP16 inference if needed  ------------------# | ||||
| option(USE_CUDA "Enable CUDA support" ON) | ||||
| if (USE_CUDA) | ||||
|     find_package(CUDA REQUIRED) | ||||
|     include_directories(${CUDA_INCLUDE_DIRS}) | ||||
|  | ||||
|     add_definitions(-DUSE_CUDA) | ||||
| endif () | ||||
|  | ||||
| # ONNXRUNTIME | ||||
|  | ||||
| @ -27,15 +30,17 @@ include_directories(${CUDA_INCLUDE_DIRS}) | ||||
| set(ONNXRUNTIME_VERSION 1.15.1) | ||||
|  | ||||
| if (WIN32) | ||||
|     # CPU | ||||
|     # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}") | ||||
|     # GPU | ||||
|     if (USE_CUDA) | ||||
|         set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}") | ||||
|     else () | ||||
|         set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}") | ||||
|     endif () | ||||
| elseif (LINUX) | ||||
|     # CPU | ||||
|     # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}") | ||||
|     # GPU | ||||
|     if (USE_CUDA) | ||||
|         set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}") | ||||
|     else () | ||||
|         set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}") | ||||
|     endif () | ||||
| elseif (APPLE) | ||||
|     set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}") | ||||
|     # Apple X64 binary | ||||
| @ -55,9 +60,15 @@ set(PROJECT_SOURCES | ||||
| add_executable(${PROJECT_NAME} ${PROJECT_SOURCES}) | ||||
|  | ||||
| if (WIN32) | ||||
|     target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib ${CUDA_LIBRARIES}) | ||||
|     target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib) | ||||
|     if (USE_CUDA) | ||||
|         target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES}) | ||||
|     endif () | ||||
| elseif (LINUX) | ||||
|     target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so ${CUDA_LIBRARIES}) | ||||
|     target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so) | ||||
|     if (USE_CUDA) | ||||
|         target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES}) | ||||
|     endif () | ||||
| elseif (APPLE) | ||||
|     target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib) | ||||
| endif () | ||||
|  | ||||
| @ -28,16 +28,23 @@ Alternatively, you can use the following command for exporting the model in the | ||||
| yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640 | ||||
| ``` | ||||
|  | ||||
| ## Download COCO.yaml file | ||||
|  | ||||
| In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml) | ||||
|  | ||||
| ## Dependencies | ||||
|  | ||||
| | Dependency                       | Version       | | ||||
| | -------------------------------- | -------- | | ||||
| | -------------------------------- | ------------- | | ||||
| | Onnxruntime(linux,windows,macos) | >=1.14.1      | | ||||
| | OpenCV                           | >=4.0.0       | | ||||
| | C++                              | >=17          | | ||||
| | Cmake                            | >=3.5         | | ||||
| | Cuda (Optional)                  | >=11.4,\<12.0 | | ||||
| | cuDNN (Cuda required)            | =8            | | ||||
|  | ||||
| Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature. | ||||
| Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future. | ||||
|  | ||||
| ## Usage | ||||
|  | ||||
|  | ||||
| @ -3,39 +3,35 @@ | ||||
|  | ||||
| #define benchmark | ||||
|  | ||||
| DCSP_CORE::DCSP_CORE() | ||||
| { | ||||
| DCSP_CORE::DCSP_CORE() { | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| DCSP_CORE::~DCSP_CORE() | ||||
| { | ||||
| DCSP_CORE::~DCSP_CORE() { | ||||
|     delete session; | ||||
| } | ||||
|  | ||||
|  | ||||
| #ifdef USE_CUDA | ||||
| namespace Ort | ||||
| { | ||||
|     template<> | ||||
|     struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; }; | ||||
| } | ||||
| #endif | ||||
|  | ||||
|  | ||||
| template<typename T> | ||||
| char* BlobFromImage(cv::Mat& iImg, T& iBlob) | ||||
| { | ||||
| char *BlobFromImage(cv::Mat &iImg, T &iBlob) { | ||||
|     int channels = iImg.channels(); | ||||
|     int imgHeight = iImg.rows; | ||||
|     int imgWidth = iImg.cols; | ||||
|  | ||||
| 	for (int c = 0; c < channels; c++) | ||||
| 	{ | ||||
| 		for (int h = 0; h < imgHeight; h++) | ||||
| 		{ | ||||
| 			for (int w = 0; w < imgWidth; w++) | ||||
| 			{ | ||||
| 				iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f); | ||||
|     for (int c = 0; c < channels; c++) { | ||||
|         for (int h = 0; h < imgHeight; h++) { | ||||
|             for (int w = 0; w < imgWidth; w++) { | ||||
|                 iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type( | ||||
|                         (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
| @ -43,12 +39,10 @@ char* BlobFromImage(cv::Mat& iImg, T& iBlob) | ||||
| } | ||||
|  | ||||
|  | ||||
| char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg) | ||||
| { | ||||
| char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) { | ||||
|     cv::Mat img = iImg.clone(); | ||||
|     cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1))); | ||||
|     if (img.channels() == 1) | ||||
| 	{ | ||||
|     if (img.channels() == 1) { | ||||
|         cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR); | ||||
|     } | ||||
|     cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB); | ||||
| @ -56,27 +50,23 @@ char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg) | ||||
| } | ||||
|  | ||||
|  | ||||
| char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) | ||||
| { | ||||
| char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) { | ||||
|     char *Ret = RET_OK; | ||||
|     std::regex pattern("[\u4e00-\u9fa5]"); | ||||
|     bool result = std::regex_search(iParams.ModelPath, pattern); | ||||
| 	if (result) | ||||
| 	{ | ||||
|     if (result) { | ||||
|         Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters."; | ||||
|         std::cout << Ret << std::endl; | ||||
|         return Ret; | ||||
|     } | ||||
| 	try | ||||
| 	{ | ||||
|     try { | ||||
|         rectConfidenceThreshold = iParams.RectConfidenceThreshold; | ||||
|         iouThreshold = iParams.iouThreshold; | ||||
|         imgSize = iParams.imgSize; | ||||
|         modelType = iParams.ModelType; | ||||
|         env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo"); | ||||
|         Ort::SessionOptions sessionOption; | ||||
| 		if (iParams.CudaEnable) | ||||
| 		{ | ||||
|         if (iParams.CudaEnable) { | ||||
|             cudaEnable = iParams.CudaEnable; | ||||
|             OrtCUDAProviderOptions cudaOption; | ||||
|             cudaOption.device_id = 0; | ||||
| @ -99,16 +89,14 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) | ||||
|         session = new Ort::Session(env, modelPath, sessionOption); | ||||
|         Ort::AllocatorWithDefaultOptions allocator; | ||||
|         size_t inputNodesNum = session->GetInputCount(); | ||||
| 		for (size_t i = 0; i < inputNodesNum; i++) | ||||
| 		{ | ||||
|         for (size_t i = 0; i < inputNodesNum; i++) { | ||||
|             Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator); | ||||
|             char *temp_buf = new char[50]; | ||||
|             strcpy(temp_buf, input_node_name.get()); | ||||
|             inputNodeNames.push_back(temp_buf); | ||||
|         } | ||||
|         size_t OutputNodesNum = session->GetOutputCount(); | ||||
| 		for (size_t i = 0; i < OutputNodesNum; i++) | ||||
| 		{ | ||||
|         for (size_t i = 0; i < OutputNodesNum; i++) { | ||||
|             Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator); | ||||
|             char *temp_buf = new char[10]; | ||||
|             strcpy(temp_buf, output_node_name.get()); | ||||
| @ -118,8 +106,7 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) | ||||
|         WarmUpSession(); | ||||
|         return RET_OK; | ||||
|     } | ||||
| 	catch (const std::exception& e) | ||||
| 	{ | ||||
|     catch (const std::exception &e) { | ||||
|         const char *str1 = "[DCSP_ONNX]:"; | ||||
|         const char *str2 = e.what(); | ||||
|         std::string result = std::string(str1) + std::string(str2); | ||||
| @ -133,8 +120,7 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) | ||||
| } | ||||
|  | ||||
|  | ||||
| char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult) | ||||
| { | ||||
| char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) { | ||||
| #ifdef benchmark | ||||
|     clock_t starttime_1 = clock(); | ||||
| #endif // benchmark | ||||
| @ -142,19 +128,18 @@ char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult) | ||||
|     char *Ret = RET_OK; | ||||
|     cv::Mat processedImg; | ||||
|     PostProcess(iImg, imgSize, processedImg); | ||||
| 	if (modelType < 4) | ||||
| 	{ | ||||
|     if (modelType < 4) { | ||||
|         float *blob = new float[processedImg.total() * 3]; | ||||
|         BlobFromImage(processedImg, blob); | ||||
|         std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)}; | ||||
|         TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); | ||||
| 	} | ||||
| 	else | ||||
| 	{ | ||||
|     } else { | ||||
| #ifdef USE_CUDA | ||||
|         half* blob = new half[processedImg.total() * 3]; | ||||
|         BlobFromImage(processedImg, blob); | ||||
|         std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) }; | ||||
|         TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); | ||||
| #endif | ||||
|     } | ||||
|  | ||||
|     return Ret; | ||||
| @ -162,13 +147,16 @@ char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult) | ||||
|  | ||||
|  | ||||
| template<typename N> | ||||
| char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,  std::vector<DCSP_RESULT>& oResult) | ||||
| { | ||||
|     Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size()); | ||||
| char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims, | ||||
|                                std::vector<DCSP_RESULT> &oResult) { | ||||
|     Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>( | ||||
|             Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), | ||||
|             inputNodeDims.data(), inputNodeDims.size()); | ||||
| #ifdef benchmark | ||||
|     clock_t starttime_2 = clock(); | ||||
| #endif // benchmark | ||||
| 	auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size()); | ||||
|     auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), | ||||
|                                      outputNodeNames.size()); | ||||
| #ifdef benchmark | ||||
|     clock_t starttime_3 = clock(); | ||||
| #endif // benchmark | ||||
| @ -178,8 +166,7 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std | ||||
|     std::vector<int64_t> outputNodeDims = tensor_info.GetShape(); | ||||
|     auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>(); | ||||
|     delete blob; | ||||
| 	switch (modelType) | ||||
| 	{ | ||||
|     switch (modelType) { | ||||
|         case 1://V8_ORIGIN_FP32 | ||||
|         case 4://V8_ORIGIN_FP16 | ||||
|         { | ||||
| @ -195,15 +182,13 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std | ||||
|  | ||||
|             float x_factor = iImg.cols / 640.; | ||||
|             float y_factor = iImg.rows / 640.; | ||||
| 		for (int i = 0; i < strideNum; ++i) | ||||
| 		{ | ||||
|             for (int i = 0; i < strideNum; ++i) { | ||||
|                 float *classesScores = data + 4; | ||||
|                 cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores); | ||||
|                 cv::Point class_id; | ||||
|                 double maxClassScore; | ||||
|                 cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id); | ||||
| 			if (maxClassScore > rectConfidenceThreshold) | ||||
| 			{ | ||||
|                 if (maxClassScore > rectConfidenceThreshold) { | ||||
|                     confidences.push_back(maxClassScore); | ||||
|                     class_ids.push_back(class_id.x); | ||||
|  | ||||
| @ -226,8 +211,7 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std | ||||
|             std::vector<int> nmsResult; | ||||
|             cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult); | ||||
|  | ||||
| 		for (int i = 0; i < nmsResult.size(); ++i) | ||||
| 		{ | ||||
|             for (int i = 0; i < nmsResult.size(); ++i) { | ||||
|                 int idx = nmsResult[i]; | ||||
|                 DCSP_RESULT result; | ||||
|                 result.classId = class_ids[idx]; | ||||
| @ -242,13 +226,12 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std | ||||
|             double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000; | ||||
|             double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000; | ||||
|             double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000; | ||||
| 		if (cudaEnable) | ||||
| 		{ | ||||
| 			std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; | ||||
| 		} | ||||
| 		else | ||||
| 		{ | ||||
| 			std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; | ||||
|             if (cudaEnable) { | ||||
|                 std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time | ||||
|                           << "ms inference, " << post_process_time << "ms post-process." << std::endl; | ||||
|             } else { | ||||
|                 std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time | ||||
|                           << "ms inference, " << post_process_time << "ms post-process." << std::endl; | ||||
|             } | ||||
| #endif // benchmark | ||||
|  | ||||
| @ -259,29 +242,28 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std | ||||
| } | ||||
|  | ||||
|  | ||||
| char* DCSP_CORE::WarmUpSession() | ||||
| { | ||||
| char *DCSP_CORE::WarmUpSession() { | ||||
|     clock_t starttime_1 = clock(); | ||||
|     cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3); | ||||
|     cv::Mat processedImg; | ||||
|     PostProcess(iImg, imgSize, processedImg); | ||||
| 	if (modelType < 4) | ||||
| 	{ | ||||
|     if (modelType < 4) { | ||||
|         float *blob = new float[iImg.total() * 3]; | ||||
|         BlobFromImage(processedImg, blob); | ||||
|         std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)}; | ||||
| 		Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); | ||||
| 		auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); | ||||
|         Ort::Value input_tensor = Ort::Value::CreateTensor<float>( | ||||
|                 Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), | ||||
|                 YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); | ||||
|         auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), | ||||
|                                            outputNodeNames.size()); | ||||
|         delete[] blob; | ||||
|         clock_t starttime_4 = clock(); | ||||
|         double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; | ||||
| 		if (cudaEnable) | ||||
| 		{ | ||||
|         if (cudaEnable) { | ||||
|             std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; | ||||
|         } | ||||
| 	} | ||||
| 	else | ||||
| 	{ | ||||
|     } else { | ||||
| #ifdef USE_CUDA | ||||
|         half* blob = new half[iImg.total() * 3]; | ||||
|         BlobFromImage(processedImg, blob); | ||||
|         std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) }; | ||||
| @ -294,6 +276,7 @@ char* DCSP_CORE::WarmUpSession() | ||||
|         { | ||||
|             std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; | ||||
|         } | ||||
| #endif | ||||
|     } | ||||
|     return RET_OK; | ||||
| } | ||||
|  | ||||
| @ -13,11 +13,13 @@ | ||||
| #include <cstdio> | ||||
| #include <opencv2/opencv.hpp> | ||||
| #include "onnxruntime_cxx_api.h" | ||||
|  | ||||
| #ifdef USE_CUDA | ||||
| #include <cuda_fp16.h> | ||||
| #endif | ||||
|  | ||||
|  | ||||
| enum MODEL_TYPE | ||||
| { | ||||
| enum MODEL_TYPE { | ||||
|     //FLOAT32 MODEL | ||||
|     YOLO_ORIGIN_V5 = 0, | ||||
|     YOLO_ORIGIN_V8 = 1,//only support v8 detector currently | ||||
| @ -29,9 +31,7 @@ enum MODEL_TYPE | ||||
| }; | ||||
|  | ||||
|  | ||||
|  | ||||
| typedef struct _DCSP_INIT_PARAM | ||||
| { | ||||
| typedef struct _DCSP_INIT_PARAM { | ||||
|     std::string ModelPath; | ||||
|     MODEL_TYPE ModelType = YOLO_ORIGIN_V8; | ||||
|     std::vector<int> imgSize = {640, 640}; | ||||
| @ -43,18 +43,17 @@ typedef struct _DCSP_INIT_PARAM | ||||
| } DCSP_INIT_PARAM; | ||||
|  | ||||
|  | ||||
| typedef struct _DCSP_RESULT | ||||
| { | ||||
| typedef struct _DCSP_RESULT { | ||||
|     int classId; | ||||
|     float confidence; | ||||
|     cv::Rect box; | ||||
| } DCSP_RESULT; | ||||
|  | ||||
|  | ||||
| class DCSP_CORE | ||||
| { | ||||
| class DCSP_CORE { | ||||
| public: | ||||
|     DCSP_CORE(); | ||||
|  | ||||
|     ~DCSP_CORE(); | ||||
|  | ||||
| public: | ||||
| @ -65,7 +64,8 @@ public: | ||||
|     char *WarmUpSession(); | ||||
|  | ||||
|     template<typename N> | ||||
| 	char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult); | ||||
|     char *TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims, | ||||
|                         std::vector<DCSP_RESULT> &oResult); | ||||
|  | ||||
|     std::vector<std::string> classes{}; | ||||
|  | ||||
|  | ||||
| @ -3,42 +3,41 @@ | ||||
| #include <filesystem> | ||||
| #include <fstream> | ||||
|  | ||||
| void file_iterator(DCSP_CORE*& p) | ||||
| { | ||||
| void file_iterator(DCSP_CORE *&p) { | ||||
|     std::filesystem::path current_path = std::filesystem::current_path(); | ||||
|     std::filesystem::path imgs_path = current_path / "images"; | ||||
| 	for (auto& i : std::filesystem::directory_iterator(imgs_path)) | ||||
| 	{ | ||||
| 		if (i.path().extension() == ".jpg" || i.path().extension() == ".png") | ||||
| 		{ | ||||
|     for (auto &i: std::filesystem::directory_iterator(imgs_path)) { | ||||
|         if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg") { | ||||
|             std::string img_path = i.path().string(); | ||||
|             cv::Mat img = cv::imread(img_path); | ||||
|             std::vector<DCSP_RESULT> res; | ||||
|             p->RunSession(img, res); | ||||
|  | ||||
| 			for (auto & re : res) | ||||
| 			{ | ||||
| 				cv::rectangle(img, re.box, cv::Scalar(0, 0 , 255), 3); | ||||
|                 std::string label = p->classes[re.classId]; | ||||
|             for (auto &re: res) { | ||||
|                 cv::RNG rng(cv::getTickCount()); | ||||
|                 cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)); | ||||
|  | ||||
|                 cv::rectangle(img, re.box, color, 3); | ||||
|                 std::string label = p->classes[re.classId] + " " + std::to_string(re.confidence); | ||||
|                 cv::putText( | ||||
|                         img, | ||||
|                         label, | ||||
|                         cv::Point(re.box.x, re.box.y - 5), | ||||
|                         cv::FONT_HERSHEY_SIMPLEX, | ||||
|                         0.75, | ||||
|                         cv::Scalar(255, 255, 0), | ||||
|                         color, | ||||
|                         2 | ||||
|                 ); | ||||
|             } | ||||
|             cv::imshow("Result", img); | ||||
|             std::cout << "Press any key to exit" << std::endl; | ||||
|             cv::imshow("Result of Detection", img); | ||||
|             cv::waitKey(0); | ||||
|             cv::destroyAllWindows(); | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| int read_coco_yaml(DCSP_CORE*& p) | ||||
| { | ||||
| int read_coco_yaml(DCSP_CORE *&p) { | ||||
|     // Open the YAML file | ||||
|     std::ifstream file("coco.yaml"); | ||||
|     if (!file.is_open()) { | ||||
| @ -80,17 +79,19 @@ int read_coco_yaml(DCSP_CORE*& p) | ||||
| } | ||||
|  | ||||
|  | ||||
| int main() | ||||
| { | ||||
| int main() { | ||||
|     DCSP_CORE *yoloDetector = new DCSP_CORE; | ||||
|     std::string model_path = "yolov8n.onnx"; | ||||
|     read_coco_yaml(yoloDetector); | ||||
| #ifdef USE_CUDA | ||||
|     // GPU FP32 inference | ||||
|     DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, true }; | ||||
|     // GPU FP16 inference | ||||
|     // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640},  0.1, 0.5, true }; | ||||
| #else | ||||
|     // CPU inference | ||||
|     // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, false }; | ||||
|     DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false}; | ||||
| #endif | ||||
|     yoloDetector->CreateSession(params); | ||||
|     file_iterator(yoloDetector); | ||||
| } | ||||
|  | ||||
		Reference in New Issue
	
	Block a user