Update YOLOv8-ONNXRuntime-CPP example with GPU inference (#4328)
Signed-off-by: Onuralp SEZER <thunderbirdtr@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
		@ -4,16 +4,16 @@ This repository features a collection of real-world applications and walkthrough
 | 
			
		||||
 | 
			
		||||
### Ultralytics YOLO Example Applications
 | 
			
		||||
 | 
			
		||||
| Title                                                                                                          | Format             | Contributor                                         |
 | 
			
		||||
| -------------------------------------------------------------------------------------------------------------- | ------------------ | --------------------------------------------------- |
 | 
			
		||||
| [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference)                                               | C++/ONNX           | [Justas Bartnykas](https://github.com/JustasBart)   |
 | 
			
		||||
| [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python)                                               | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
 | 
			
		||||
| [YOLOv8 .NET ONNX ImageSharp](https://github.com/dme-compunet/YOLOv8)                                          | C#/ONNX/ImageSharp | [Compunet](https://github.com/dme-compunet)         |
 | 
			
		||||
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net)                                       | C# .Net            | [Samuel Stainback](https://github.com/sstainba)     |
 | 
			
		||||
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python             | [Lakshantha](https://github.com/lakshanthad)        |
 | 
			
		||||
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime)                                                              | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel)   |
 | 
			
		||||
| [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP)                                                             | C++/ONNXRuntime    | [DennisJcy](https://github.com/DennisJcy)           |
 | 
			
		||||
| [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs)                              | C#/ONNX            | [Kayzwer](https://github.com/Kayzwer)               |
 | 
			
		||||
| Title                                                                                                          | Format             | Contributor                                                                               |
 | 
			
		||||
| -------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------- |
 | 
			
		||||
| [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference)                                               | C++/ONNX           | [Justas Bartnykas](https://github.com/JustasBart)                                         |
 | 
			
		||||
| [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python)                                               | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro)                                       |
 | 
			
		||||
| [YOLOv8 .NET ONNX ImageSharp](https://github.com/dme-compunet/YOLOv8)                                          | C#/ONNX/ImageSharp | [Compunet](https://github.com/dme-compunet)                                               |
 | 
			
		||||
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net)                                       | C# .Net            | [Samuel Stainback](https://github.com/sstainba)                                           |
 | 
			
		||||
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python             | [Lakshantha](https://github.com/lakshanthad)                                              |
 | 
			
		||||
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime)                                                              | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel)                                         |
 | 
			
		||||
| [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP)                                                             | C++/ONNXRuntime    | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) |
 | 
			
		||||
| [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs)                              | C#/ONNX            | [Kayzwer](https://github.com/Kayzwer)                                                     |
 | 
			
		||||
 | 
			
		||||
### How to Contribute
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -17,58 +17,69 @@ include_directories(${OpenCV_INCLUDE_DIRS})
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# -------------- Compile CUDA for FP16 inference if needed  ------------------#
 | 
			
		||||
find_package(CUDA REQUIRED)
 | 
			
		||||
include_directories(${CUDA_INCLUDE_DIRS})
 | 
			
		||||
 | 
			
		||||
option(USE_CUDA "Enable CUDA support" ON)
 | 
			
		||||
if (USE_CUDA)
 | 
			
		||||
    find_package(CUDA REQUIRED)
 | 
			
		||||
    include_directories(${CUDA_INCLUDE_DIRS})
 | 
			
		||||
    add_definitions(-DUSE_CUDA)
 | 
			
		||||
endif ()
 | 
			
		||||
 | 
			
		||||
# ONNXRUNTIME
 | 
			
		||||
 | 
			
		||||
# Set ONNXRUNTIME_VERSION
 | 
			
		||||
set(ONNXRUNTIME_VERSION 1.15.1)
 | 
			
		||||
 | 
			
		||||
if(WIN32)
 | 
			
		||||
    # CPU
 | 
			
		||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    # GPU
 | 
			
		||||
    set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
elseif(LINUX)
 | 
			
		||||
    # CPU
 | 
			
		||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    # GPU
 | 
			
		||||
    set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
elseif(APPLE)
 | 
			
		||||
if (WIN32)
 | 
			
		||||
    if (USE_CUDA)
 | 
			
		||||
        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    else ()
 | 
			
		||||
        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    endif ()
 | 
			
		||||
elseif (LINUX)
 | 
			
		||||
    if (USE_CUDA)
 | 
			
		||||
        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    else ()
 | 
			
		||||
        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    endif ()
 | 
			
		||||
elseif (APPLE)
 | 
			
		||||
    set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    # Apple X64 binary
 | 
			
		||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-x64-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
    # Apple Universal binary
 | 
			
		||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-universal2-${ONNXRUNTIME_VERSION}")
 | 
			
		||||
endif()
 | 
			
		||||
endif ()
 | 
			
		||||
 | 
			
		||||
include_directories(${PROJECT_NAME} ${ONNXRUNTIME_ROOT}/include)
 | 
			
		||||
 | 
			
		||||
set(PROJECT_SOURCES
 | 
			
		||||
    main.cpp
 | 
			
		||||
    inference.h
 | 
			
		||||
    inference.cpp
 | 
			
		||||
        main.cpp
 | 
			
		||||
        inference.h
 | 
			
		||||
        inference.cpp
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
 | 
			
		||||
 | 
			
		||||
if(WIN32)
 | 
			
		||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib ${CUDA_LIBRARIES})
 | 
			
		||||
elseif(LINUX)
 | 
			
		||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so ${CUDA_LIBRARIES})
 | 
			
		||||
elseif(APPLE)
 | 
			
		||||
if (WIN32)
 | 
			
		||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib)
 | 
			
		||||
    if (USE_CUDA)
 | 
			
		||||
        target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
 | 
			
		||||
    endif ()
 | 
			
		||||
elseif (LINUX)
 | 
			
		||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so)
 | 
			
		||||
    if (USE_CUDA)
 | 
			
		||||
        target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
 | 
			
		||||
    endif ()
 | 
			
		||||
elseif (APPLE)
 | 
			
		||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
 | 
			
		||||
endif()
 | 
			
		||||
endif ()
 | 
			
		||||
 | 
			
		||||
# For windows system, copy onnxruntime.dll to the same folder of the executable file
 | 
			
		||||
if(WIN32)
 | 
			
		||||
if (WIN32)
 | 
			
		||||
    add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
 | 
			
		||||
        COMMAND ${CMAKE_COMMAND} -E copy_if_different
 | 
			
		||||
        "${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
 | 
			
		||||
        $<TARGET_FILE_DIR:${PROJECT_NAME}>)
 | 
			
		||||
endif()
 | 
			
		||||
            COMMAND ${CMAKE_COMMAND} -E copy_if_different
 | 
			
		||||
            "${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
 | 
			
		||||
            $<TARGET_FILE_DIR:${PROJECT_NAME}>)
 | 
			
		||||
endif ()
 | 
			
		||||
 | 
			
		||||
# Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
 | 
			
		||||
# and put it in the same folder of the executable file
 | 
			
		||||
 | 
			
		||||
@ -28,16 +28,23 @@ Alternatively, you can use the following command for exporting the model in the
 | 
			
		||||
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Download COCO.yaml file
 | 
			
		||||
 | 
			
		||||
In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)
 | 
			
		||||
 | 
			
		||||
## Dependencies
 | 
			
		||||
 | 
			
		||||
| Dependency                       | Version  |
 | 
			
		||||
| -------------------------------- | -------- |
 | 
			
		||||
| Onnxruntime(linux,windows,macos) | >=1.14.1 |
 | 
			
		||||
| OpenCV                           | >=4.0.0  |
 | 
			
		||||
| C++                              | >=17     |
 | 
			
		||||
| Cmake                            | >=3.5    |
 | 
			
		||||
| Dependency                       | Version       |
 | 
			
		||||
| -------------------------------- | ------------- |
 | 
			
		||||
| Onnxruntime(linux,windows,macos) | >=1.14.1      |
 | 
			
		||||
| OpenCV                           | >=4.0.0       |
 | 
			
		||||
| C++                              | >=17          |
 | 
			
		||||
| Cmake                            | >=3.5         |
 | 
			
		||||
| Cuda (Optional)                  | >=11.4,\<12.0 |
 | 
			
		||||
| cuDNN (Cuda required)            | =8            |
 | 
			
		||||
 | 
			
		||||
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
 | 
			
		||||
Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
 | 
			
		||||
 | 
			
		||||
## Usage
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -3,297 +3,280 @@
 | 
			
		||||
 | 
			
		||||
#define benchmark
 | 
			
		||||
 | 
			
		||||
DCSP_CORE::DCSP_CORE()
 | 
			
		||||
{
 | 
			
		||||
DCSP_CORE::DCSP_CORE() {
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DCSP_CORE::~DCSP_CORE()
 | 
			
		||||
{
 | 
			
		||||
	delete session;
 | 
			
		||||
DCSP_CORE::~DCSP_CORE() {
 | 
			
		||||
    delete session;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef USE_CUDA
 | 
			
		||||
namespace Ort
 | 
			
		||||
{
 | 
			
		||||
	template<>
 | 
			
		||||
	struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
 | 
			
		||||
    template<>
 | 
			
		||||
    struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename T>
 | 
			
		||||
char* BlobFromImage(cv::Mat& iImg, T& iBlob)
 | 
			
		||||
{
 | 
			
		||||
	int channels = iImg.channels();
 | 
			
		||||
	int imgHeight = iImg.rows;
 | 
			
		||||
	int imgWidth = iImg.cols;
 | 
			
		||||
char *BlobFromImage(cv::Mat &iImg, T &iBlob) {
 | 
			
		||||
    int channels = iImg.channels();
 | 
			
		||||
    int imgHeight = iImg.rows;
 | 
			
		||||
    int imgWidth = iImg.cols;
 | 
			
		||||
 | 
			
		||||
	for (int c = 0; c < channels; c++)
 | 
			
		||||
	{
 | 
			
		||||
		for (int h = 0; h < imgHeight; h++)
 | 
			
		||||
		{
 | 
			
		||||
			for (int w = 0; w < imgWidth; w++)
 | 
			
		||||
			{
 | 
			
		||||
				iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return RET_OK;
 | 
			
		||||
    for (int c = 0; c < channels; c++) {
 | 
			
		||||
        for (int h = 0; h < imgHeight; h++) {
 | 
			
		||||
            for (int w = 0; w < imgWidth; w++) {
 | 
			
		||||
                iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
 | 
			
		||||
                        (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return RET_OK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
 | 
			
		||||
{
 | 
			
		||||
	cv::Mat img = iImg.clone();
 | 
			
		||||
char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) {
 | 
			
		||||
    cv::Mat img = iImg.clone();
 | 
			
		||||
    cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
 | 
			
		||||
    if (img.channels() == 1)
 | 
			
		||||
	{
 | 
			
		||||
		cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
 | 
			
		||||
	}
 | 
			
		||||
	cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
 | 
			
		||||
	return RET_OK;
 | 
			
		||||
    if (img.channels() == 1) {
 | 
			
		||||
        cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
 | 
			
		||||
    }
 | 
			
		||||
    cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
 | 
			
		||||
    return RET_OK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
 | 
			
		||||
{
 | 
			
		||||
	char* Ret = RET_OK;
 | 
			
		||||
	std::regex pattern("[\u4e00-\u9fa5]");
 | 
			
		||||
	bool result = std::regex_search(iParams.ModelPath, pattern);
 | 
			
		||||
	if (result)
 | 
			
		||||
	{
 | 
			
		||||
		Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
 | 
			
		||||
		std::cout << Ret << std::endl;
 | 
			
		||||
		return Ret;
 | 
			
		||||
	}
 | 
			
		||||
	try
 | 
			
		||||
	{
 | 
			
		||||
		rectConfidenceThreshold = iParams.RectConfidenceThreshold;
 | 
			
		||||
		iouThreshold = iParams.iouThreshold;
 | 
			
		||||
		imgSize = iParams.imgSize;
 | 
			
		||||
		modelType = iParams.ModelType;
 | 
			
		||||
		env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
 | 
			
		||||
		Ort::SessionOptions sessionOption;
 | 
			
		||||
		if (iParams.CudaEnable)
 | 
			
		||||
		{
 | 
			
		||||
			cudaEnable = iParams.CudaEnable;
 | 
			
		||||
			OrtCUDAProviderOptions cudaOption;
 | 
			
		||||
			cudaOption.device_id = 0;
 | 
			
		||||
			sessionOption.AppendExecutionProvider_CUDA(cudaOption);
 | 
			
		||||
		}
 | 
			
		||||
		sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
 | 
			
		||||
		sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
 | 
			
		||||
		sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
 | 
			
		||||
char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) {
 | 
			
		||||
    char *Ret = RET_OK;
 | 
			
		||||
    std::regex pattern("[\u4e00-\u9fa5]");
 | 
			
		||||
    bool result = std::regex_search(iParams.ModelPath, pattern);
 | 
			
		||||
    if (result) {
 | 
			
		||||
        Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
 | 
			
		||||
        std::cout << Ret << std::endl;
 | 
			
		||||
        return Ret;
 | 
			
		||||
    }
 | 
			
		||||
    try {
 | 
			
		||||
        rectConfidenceThreshold = iParams.RectConfidenceThreshold;
 | 
			
		||||
        iouThreshold = iParams.iouThreshold;
 | 
			
		||||
        imgSize = iParams.imgSize;
 | 
			
		||||
        modelType = iParams.ModelType;
 | 
			
		||||
        env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
 | 
			
		||||
        Ort::SessionOptions sessionOption;
 | 
			
		||||
        if (iParams.CudaEnable) {
 | 
			
		||||
            cudaEnable = iParams.CudaEnable;
 | 
			
		||||
            OrtCUDAProviderOptions cudaOption;
 | 
			
		||||
            cudaOption.device_id = 0;
 | 
			
		||||
            sessionOption.AppendExecutionProvider_CUDA(cudaOption);
 | 
			
		||||
        }
 | 
			
		||||
        sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
 | 
			
		||||
        sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
 | 
			
		||||
        sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
 | 
			
		||||
 | 
			
		||||
#ifdef _WIN32
 | 
			
		||||
		int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
 | 
			
		||||
		wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
 | 
			
		||||
		MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
 | 
			
		||||
		wide_cstr[ModelPathSize] = L'\0';
 | 
			
		||||
		const wchar_t* modelPath = wide_cstr;
 | 
			
		||||
        int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
 | 
			
		||||
        wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
 | 
			
		||||
        MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
 | 
			
		||||
        wide_cstr[ModelPathSize] = L'\0';
 | 
			
		||||
        const wchar_t* modelPath = wide_cstr;
 | 
			
		||||
#else
 | 
			
		||||
		const char* modelPath = iParams.ModelPath.c_str();
 | 
			
		||||
        const char *modelPath = iParams.ModelPath.c_str();
 | 
			
		||||
#endif // _WIN32
 | 
			
		||||
 | 
			
		||||
		session = new Ort::Session(env, modelPath, sessionOption);
 | 
			
		||||
		Ort::AllocatorWithDefaultOptions allocator;
 | 
			
		||||
		size_t inputNodesNum = session->GetInputCount();
 | 
			
		||||
		for (size_t i = 0; i < inputNodesNum; i++)
 | 
			
		||||
		{
 | 
			
		||||
			Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
 | 
			
		||||
			char* temp_buf = new char[50];
 | 
			
		||||
			strcpy(temp_buf, input_node_name.get());
 | 
			
		||||
			inputNodeNames.push_back(temp_buf);
 | 
			
		||||
		}
 | 
			
		||||
		size_t OutputNodesNum = session->GetOutputCount();
 | 
			
		||||
		for (size_t i = 0; i < OutputNodesNum; i++)
 | 
			
		||||
		{
 | 
			
		||||
			Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
 | 
			
		||||
			char* temp_buf = new char[10];
 | 
			
		||||
			strcpy(temp_buf, output_node_name.get());
 | 
			
		||||
			outputNodeNames.push_back(temp_buf);
 | 
			
		||||
		}
 | 
			
		||||
		options = Ort::RunOptions{ nullptr };
 | 
			
		||||
		WarmUpSession();
 | 
			
		||||
		return RET_OK;
 | 
			
		||||
	}
 | 
			
		||||
	catch (const std::exception& e)
 | 
			
		||||
	{
 | 
			
		||||
		const char* str1 = "[DCSP_ONNX]:";
 | 
			
		||||
		const char* str2 = e.what();
 | 
			
		||||
		std::string result = std::string(str1) + std::string(str2);
 | 
			
		||||
		char* merged = new char[result.length() + 1];
 | 
			
		||||
		std::strcpy(merged, result.c_str());
 | 
			
		||||
		std::cout << merged << std::endl;
 | 
			
		||||
		delete[] merged;
 | 
			
		||||
		return "[DCSP_ONNX]:Create session failed.";
 | 
			
		||||
	}
 | 
			
		||||
        session = new Ort::Session(env, modelPath, sessionOption);
 | 
			
		||||
        Ort::AllocatorWithDefaultOptions allocator;
 | 
			
		||||
        size_t inputNodesNum = session->GetInputCount();
 | 
			
		||||
        for (size_t i = 0; i < inputNodesNum; i++) {
 | 
			
		||||
            Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
 | 
			
		||||
            char *temp_buf = new char[50];
 | 
			
		||||
            strcpy(temp_buf, input_node_name.get());
 | 
			
		||||
            inputNodeNames.push_back(temp_buf);
 | 
			
		||||
        }
 | 
			
		||||
        size_t OutputNodesNum = session->GetOutputCount();
 | 
			
		||||
        for (size_t i = 0; i < OutputNodesNum; i++) {
 | 
			
		||||
            Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
 | 
			
		||||
            char *temp_buf = new char[10];
 | 
			
		||||
            strcpy(temp_buf, output_node_name.get());
 | 
			
		||||
            outputNodeNames.push_back(temp_buf);
 | 
			
		||||
        }
 | 
			
		||||
        options = Ort::RunOptions{nullptr};
 | 
			
		||||
        WarmUpSession();
 | 
			
		||||
        return RET_OK;
 | 
			
		||||
    }
 | 
			
		||||
    catch (const std::exception &e) {
 | 
			
		||||
        const char *str1 = "[DCSP_ONNX]:";
 | 
			
		||||
        const char *str2 = e.what();
 | 
			
		||||
        std::string result = std::string(str1) + std::string(str2);
 | 
			
		||||
        char *merged = new char[result.length() + 1];
 | 
			
		||||
        std::strcpy(merged, result.c_str());
 | 
			
		||||
        std::cout << merged << std::endl;
 | 
			
		||||
        delete[] merged;
 | 
			
		||||
        return "[DCSP_ONNX]:Create session failed.";
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
 | 
			
		||||
{
 | 
			
		||||
char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) {
 | 
			
		||||
#ifdef benchmark
 | 
			
		||||
	clock_t starttime_1 = clock();
 | 
			
		||||
    clock_t starttime_1 = clock();
 | 
			
		||||
#endif // benchmark
 | 
			
		||||
 | 
			
		||||
	char* Ret = RET_OK;
 | 
			
		||||
	cv::Mat processedImg;
 | 
			
		||||
	PostProcess(iImg, imgSize, processedImg);
 | 
			
		||||
	if (modelType < 4)
 | 
			
		||||
	{
 | 
			
		||||
		float* blob = new float[processedImg.total() * 3];
 | 
			
		||||
		BlobFromImage(processedImg, blob);
 | 
			
		||||
		std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
			
		||||
		TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		half* blob = new half[processedImg.total() * 3];
 | 
			
		||||
		BlobFromImage(processedImg, blob);
 | 
			
		||||
		std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
			
		||||
		TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
			
		||||
	}
 | 
			
		||||
    char *Ret = RET_OK;
 | 
			
		||||
    cv::Mat processedImg;
 | 
			
		||||
    PostProcess(iImg, imgSize, processedImg);
 | 
			
		||||
    if (modelType < 4) {
 | 
			
		||||
        float *blob = new float[processedImg.total() * 3];
 | 
			
		||||
        BlobFromImage(processedImg, blob);
 | 
			
		||||
        std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)};
 | 
			
		||||
        TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
			
		||||
    } else {
 | 
			
		||||
#ifdef USE_CUDA
 | 
			
		||||
        half* blob = new half[processedImg.total() * 3];
 | 
			
		||||
        BlobFromImage(processedImg, blob);
 | 
			
		||||
        std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
			
		||||
        TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
	return Ret;
 | 
			
		||||
    return Ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename N>
 | 
			
		||||
char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,  std::vector<DCSP_RESULT>& oResult)
 | 
			
		||||
{
 | 
			
		||||
    Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
 | 
			
		||||
char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
 | 
			
		||||
                               std::vector<DCSP_RESULT> &oResult) {
 | 
			
		||||
    Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
 | 
			
		||||
            Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
 | 
			
		||||
            inputNodeDims.data(), inputNodeDims.size());
 | 
			
		||||
#ifdef benchmark
 | 
			
		||||
	clock_t starttime_2 = clock();
 | 
			
		||||
    clock_t starttime_2 = clock();
 | 
			
		||||
#endif // benchmark
 | 
			
		||||
	auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size());
 | 
			
		||||
    auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
 | 
			
		||||
                                     outputNodeNames.size());
 | 
			
		||||
#ifdef benchmark
 | 
			
		||||
	clock_t starttime_3 = clock();
 | 
			
		||||
    clock_t starttime_3 = clock();
 | 
			
		||||
#endif // benchmark
 | 
			
		||||
 | 
			
		||||
	Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
 | 
			
		||||
	auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
 | 
			
		||||
	std::vector<int64_t>outputNodeDims = tensor_info.GetShape();
 | 
			
		||||
    Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
 | 
			
		||||
    auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
 | 
			
		||||
    std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
 | 
			
		||||
    auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
 | 
			
		||||
	delete blob;
 | 
			
		||||
	switch (modelType)
 | 
			
		||||
	{
 | 
			
		||||
	case 1://V8_ORIGIN_FP32
 | 
			
		||||
	case 4://V8_ORIGIN_FP16
 | 
			
		||||
	{
 | 
			
		||||
		int strideNum = outputNodeDims[2];
 | 
			
		||||
		int signalResultNum = outputNodeDims[1];
 | 
			
		||||
		std::vector<int> class_ids;
 | 
			
		||||
		std::vector<float> confidences;
 | 
			
		||||
		std::vector<cv::Rect> boxes;
 | 
			
		||||
		cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
 | 
			
		||||
		rowData = rowData.t();
 | 
			
		||||
    delete blob;
 | 
			
		||||
    switch (modelType) {
 | 
			
		||||
        case 1://V8_ORIGIN_FP32
 | 
			
		||||
        case 4://V8_ORIGIN_FP16
 | 
			
		||||
        {
 | 
			
		||||
            int strideNum = outputNodeDims[2];
 | 
			
		||||
            int signalResultNum = outputNodeDims[1];
 | 
			
		||||
            std::vector<int> class_ids;
 | 
			
		||||
            std::vector<float> confidences;
 | 
			
		||||
            std::vector<cv::Rect> boxes;
 | 
			
		||||
            cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
 | 
			
		||||
            rowData = rowData.t();
 | 
			
		||||
 | 
			
		||||
		float* data = (float*)rowData.data;
 | 
			
		||||
            float *data = (float *) rowData.data;
 | 
			
		||||
 | 
			
		||||
		float x_factor = iImg.cols / 640.;
 | 
			
		||||
		float y_factor = iImg.rows / 640.;
 | 
			
		||||
		for (int i = 0; i < strideNum; ++i)
 | 
			
		||||
		{
 | 
			
		||||
			float* classesScores = data + 4;
 | 
			
		||||
			cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
 | 
			
		||||
			cv::Point class_id;
 | 
			
		||||
			double maxClassScore;
 | 
			
		||||
			cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
 | 
			
		||||
			if (maxClassScore > rectConfidenceThreshold)
 | 
			
		||||
			{
 | 
			
		||||
				confidences.push_back(maxClassScore);
 | 
			
		||||
				class_ids.push_back(class_id.x);
 | 
			
		||||
            float x_factor = iImg.cols / 640.;
 | 
			
		||||
            float y_factor = iImg.rows / 640.;
 | 
			
		||||
            for (int i = 0; i < strideNum; ++i) {
 | 
			
		||||
                float *classesScores = data + 4;
 | 
			
		||||
                cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
 | 
			
		||||
                cv::Point class_id;
 | 
			
		||||
                double maxClassScore;
 | 
			
		||||
                cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
 | 
			
		||||
                if (maxClassScore > rectConfidenceThreshold) {
 | 
			
		||||
                    confidences.push_back(maxClassScore);
 | 
			
		||||
                    class_ids.push_back(class_id.x);
 | 
			
		||||
 | 
			
		||||
				float x = data[0];
 | 
			
		||||
				float y = data[1];
 | 
			
		||||
				float w = data[2];
 | 
			
		||||
				float h = data[3];
 | 
			
		||||
                    float x = data[0];
 | 
			
		||||
                    float y = data[1];
 | 
			
		||||
                    float w = data[2];
 | 
			
		||||
                    float h = data[3];
 | 
			
		||||
 | 
			
		||||
				int left = int((x - 0.5 * w) * x_factor);
 | 
			
		||||
				int top = int((y - 0.5 * h) * y_factor);
 | 
			
		||||
                    int left = int((x - 0.5 * w) * x_factor);
 | 
			
		||||
                    int top = int((y - 0.5 * h) * y_factor);
 | 
			
		||||
 | 
			
		||||
				int width = int(w * x_factor);
 | 
			
		||||
				int height = int(h * y_factor);
 | 
			
		||||
                    int width = int(w * x_factor);
 | 
			
		||||
                    int height = int(h * y_factor);
 | 
			
		||||
 | 
			
		||||
				boxes.emplace_back(left, top, width, height);
 | 
			
		||||
			}
 | 
			
		||||
			data += signalResultNum;
 | 
			
		||||
		}
 | 
			
		||||
                    boxes.emplace_back(left, top, width, height);
 | 
			
		||||
                }
 | 
			
		||||
                data += signalResultNum;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
		std::vector<int> nmsResult;
 | 
			
		||||
		cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
 | 
			
		||||
            std::vector<int> nmsResult;
 | 
			
		||||
            cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
 | 
			
		||||
 | 
			
		||||
		for (int i = 0; i < nmsResult.size(); ++i)
 | 
			
		||||
		{
 | 
			
		||||
			int idx = nmsResult[i];
 | 
			
		||||
			DCSP_RESULT result;
 | 
			
		||||
			result.classId = class_ids[idx];
 | 
			
		||||
			result.confidence = confidences[idx];
 | 
			
		||||
			result.box = boxes[idx];
 | 
			
		||||
			oResult.push_back(result);
 | 
			
		||||
		}
 | 
			
		||||
            for (int i = 0; i < nmsResult.size(); ++i) {
 | 
			
		||||
                int idx = nmsResult[i];
 | 
			
		||||
                DCSP_RESULT result;
 | 
			
		||||
                result.classId = class_ids[idx];
 | 
			
		||||
                result.confidence = confidences[idx];
 | 
			
		||||
                result.box = boxes[idx];
 | 
			
		||||
                oResult.push_back(result);
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef benchmark
 | 
			
		||||
		clock_t starttime_4 = clock();
 | 
			
		||||
		double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
		double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
		double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
		if (cudaEnable)
 | 
			
		||||
		{
 | 
			
		||||
			std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
			
		||||
		}
 | 
			
		||||
            clock_t starttime_4 = clock();
 | 
			
		||||
            double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
            double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
            double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
            if (cudaEnable) {
 | 
			
		||||
                std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time
 | 
			
		||||
                          << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
			
		||||
            } else {
 | 
			
		||||
                std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time
 | 
			
		||||
                          << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
#endif // benchmark
 | 
			
		||||
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
	}
 | 
			
		||||
	return RET_OK;
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return RET_OK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
char* DCSP_CORE::WarmUpSession()
 | 
			
		||||
{
 | 
			
		||||
	clock_t starttime_1 = clock();
 | 
			
		||||
	cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
 | 
			
		||||
	cv::Mat processedImg;
 | 
			
		||||
	PostProcess(iImg, imgSize, processedImg);
 | 
			
		||||
	if (modelType < 4)
 | 
			
		||||
	{
 | 
			
		||||
		float* blob = new float[iImg.total() * 3];
 | 
			
		||||
		BlobFromImage(processedImg, blob);
 | 
			
		||||
		std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
			
		||||
		Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
 | 
			
		||||
		auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
 | 
			
		||||
		delete[] blob;
 | 
			
		||||
		clock_t starttime_4 = clock();
 | 
			
		||||
		double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
		if (cudaEnable)
 | 
			
		||||
		{
 | 
			
		||||
			std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		half* blob = new half[iImg.total() * 3];
 | 
			
		||||
		BlobFromImage(processedImg, blob);
 | 
			
		||||
		std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
			
		||||
		Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
 | 
			
		||||
		auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
 | 
			
		||||
		delete[] blob;
 | 
			
		||||
		clock_t starttime_4 = clock();
 | 
			
		||||
		double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
		if (cudaEnable)
 | 
			
		||||
		{
 | 
			
		||||
			std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return RET_OK;
 | 
			
		||||
char *DCSP_CORE::WarmUpSession() {
 | 
			
		||||
    clock_t starttime_1 = clock();
 | 
			
		||||
    cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
 | 
			
		||||
    cv::Mat processedImg;
 | 
			
		||||
    PostProcess(iImg, imgSize, processedImg);
 | 
			
		||||
    if (modelType < 4) {
 | 
			
		||||
        float *blob = new float[iImg.total() * 3];
 | 
			
		||||
        BlobFromImage(processedImg, blob);
 | 
			
		||||
        std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)};
 | 
			
		||||
        Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
 | 
			
		||||
                Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
 | 
			
		||||
                YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
 | 
			
		||||
        auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
 | 
			
		||||
                                           outputNodeNames.size());
 | 
			
		||||
        delete[] blob;
 | 
			
		||||
        clock_t starttime_4 = clock();
 | 
			
		||||
        double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
        if (cudaEnable) {
 | 
			
		||||
            std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
    } else {
 | 
			
		||||
#ifdef USE_CUDA
 | 
			
		||||
        half* blob = new half[iImg.total() * 3];
 | 
			
		||||
        BlobFromImage(processedImg, blob);
 | 
			
		||||
        std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
			
		||||
        Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
 | 
			
		||||
        auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
 | 
			
		||||
        delete[] blob;
 | 
			
		||||
        clock_t starttime_4 = clock();
 | 
			
		||||
        double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
			
		||||
        if (cudaEnable)
 | 
			
		||||
        {
 | 
			
		||||
            std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
			
		||||
        }
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
    return RET_OK;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#define	RET_OK nullptr
 | 
			
		||||
#define    RET_OK nullptr
 | 
			
		||||
 | 
			
		||||
#ifdef _WIN32
 | 
			
		||||
#include <Windows.h>
 | 
			
		||||
@ -13,72 +13,72 @@
 | 
			
		||||
#include <cstdio>
 | 
			
		||||
#include <opencv2/opencv.hpp>
 | 
			
		||||
#include "onnxruntime_cxx_api.h"
 | 
			
		||||
 | 
			
		||||
#ifdef USE_CUDA
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
enum MODEL_TYPE
 | 
			
		||||
{
 | 
			
		||||
	//FLOAT32 MODEL
 | 
			
		||||
	YOLO_ORIGIN_V5 = 0,
 | 
			
		||||
	YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
 | 
			
		||||
	YOLO_POSE_V8 = 2,
 | 
			
		||||
	YOLO_CLS_V8 = 3,
 | 
			
		||||
	YOLO_ORIGIN_V8_HALF = 4,
 | 
			
		||||
	YOLO_POSE_V8_HALF = 5,
 | 
			
		||||
	YOLO_CLS_V8_HALF = 6
 | 
			
		||||
enum MODEL_TYPE {
 | 
			
		||||
    //FLOAT32 MODEL
 | 
			
		||||
    YOLO_ORIGIN_V5 = 0,
 | 
			
		||||
    YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
 | 
			
		||||
    YOLO_POSE_V8 = 2,
 | 
			
		||||
    YOLO_CLS_V8 = 3,
 | 
			
		||||
    YOLO_ORIGIN_V8_HALF = 4,
 | 
			
		||||
    YOLO_POSE_V8_HALF = 5,
 | 
			
		||||
    YOLO_CLS_V8_HALF = 6
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
typedef struct _DCSP_INIT_PARAM
 | 
			
		||||
{
 | 
			
		||||
	std::string								ModelPath;
 | 
			
		||||
	MODEL_TYPE								ModelType = YOLO_ORIGIN_V8;
 | 
			
		||||
	std::vector<int>						imgSize={640, 640};
 | 
			
		||||
	float									RectConfidenceThreshold = 0.6;
 | 
			
		||||
	float									iouThreshold = 0.5;
 | 
			
		||||
	bool									CudaEnable = false;
 | 
			
		||||
	int										LogSeverityLevel = 3;
 | 
			
		||||
	int										IntraOpNumThreads = 1;
 | 
			
		||||
}DCSP_INIT_PARAM;
 | 
			
		||||
typedef struct _DCSP_INIT_PARAM {
 | 
			
		||||
    std::string ModelPath;
 | 
			
		||||
    MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
 | 
			
		||||
    std::vector<int> imgSize = {640, 640};
 | 
			
		||||
    float RectConfidenceThreshold = 0.6;
 | 
			
		||||
    float iouThreshold = 0.5;
 | 
			
		||||
    bool CudaEnable = false;
 | 
			
		||||
    int LogSeverityLevel = 3;
 | 
			
		||||
    int IntraOpNumThreads = 1;
 | 
			
		||||
} DCSP_INIT_PARAM;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
typedef struct _DCSP_RESULT
 | 
			
		||||
{
 | 
			
		||||
	int classId;
 | 
			
		||||
	float confidence;
 | 
			
		||||
	cv::Rect box;
 | 
			
		||||
}DCSP_RESULT;
 | 
			
		||||
typedef struct _DCSP_RESULT {
 | 
			
		||||
    int classId;
 | 
			
		||||
    float confidence;
 | 
			
		||||
    cv::Rect box;
 | 
			
		||||
} DCSP_RESULT;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DCSP_CORE
 | 
			
		||||
{
 | 
			
		||||
class DCSP_CORE {
 | 
			
		||||
public:
 | 
			
		||||
	DCSP_CORE();
 | 
			
		||||
	~DCSP_CORE();
 | 
			
		||||
    DCSP_CORE();
 | 
			
		||||
 | 
			
		||||
    ~DCSP_CORE();
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
	char* CreateSession(DCSP_INIT_PARAM &iParams);
 | 
			
		||||
    char *CreateSession(DCSP_INIT_PARAM &iParams);
 | 
			
		||||
 | 
			
		||||
	char* RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult);
 | 
			
		||||
    char *RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult);
 | 
			
		||||
 | 
			
		||||
	char* WarmUpSession();
 | 
			
		||||
    char *WarmUpSession();
 | 
			
		||||
 | 
			
		||||
	template<typename N>
 | 
			
		||||
	char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult);
 | 
			
		||||
    template<typename N>
 | 
			
		||||
    char *TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
 | 
			
		||||
                        std::vector<DCSP_RESULT> &oResult);
 | 
			
		||||
 | 
			
		||||
    std::vector<std::string> classes{};
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
	Ort::Env				env;
 | 
			
		||||
	Ort::Session*			session;
 | 
			
		||||
	bool					cudaEnable;
 | 
			
		||||
	Ort::RunOptions			options;
 | 
			
		||||
	std::vector<const char*> inputNodeNames;
 | 
			
		||||
	std::vector<const char*> outputNodeNames;
 | 
			
		||||
    Ort::Env env;
 | 
			
		||||
    Ort::Session *session;
 | 
			
		||||
    bool cudaEnable;
 | 
			
		||||
    Ort::RunOptions options;
 | 
			
		||||
    std::vector<const char *> inputNodeNames;
 | 
			
		||||
    std::vector<const char *> outputNodeNames;
 | 
			
		||||
 | 
			
		||||
    MODEL_TYPE				modelType;
 | 
			
		||||
	std::vector<int>		imgSize;
 | 
			
		||||
	float					rectConfidenceThreshold;
 | 
			
		||||
	float					iouThreshold;
 | 
			
		||||
    MODEL_TYPE modelType;
 | 
			
		||||
    std::vector<int> imgSize;
 | 
			
		||||
    float rectConfidenceThreshold;
 | 
			
		||||
    float iouThreshold;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@ -3,42 +3,41 @@
 | 
			
		||||
#include <filesystem>
 | 
			
		||||
#include <fstream>
 | 
			
		||||
 | 
			
		||||
void file_iterator(DCSP_CORE*& p)
 | 
			
		||||
{
 | 
			
		||||
	std::filesystem::path current_path = std::filesystem::current_path();
 | 
			
		||||
	std::filesystem::path imgs_path = current_path/"images";
 | 
			
		||||
	for (auto& i : std::filesystem::directory_iterator(imgs_path))
 | 
			
		||||
	{
 | 
			
		||||
		if (i.path().extension() == ".jpg" || i.path().extension() == ".png")
 | 
			
		||||
		{
 | 
			
		||||
			std::string img_path = i.path().string();
 | 
			
		||||
			cv::Mat img = cv::imread(img_path);
 | 
			
		||||
			std::vector<DCSP_RESULT> res;
 | 
			
		||||
			p->RunSession(img, res);
 | 
			
		||||
void file_iterator(DCSP_CORE *&p) {
 | 
			
		||||
    std::filesystem::path current_path = std::filesystem::current_path();
 | 
			
		||||
    std::filesystem::path imgs_path = current_path / "images";
 | 
			
		||||
    for (auto &i: std::filesystem::directory_iterator(imgs_path)) {
 | 
			
		||||
        if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg") {
 | 
			
		||||
            std::string img_path = i.path().string();
 | 
			
		||||
            cv::Mat img = cv::imread(img_path);
 | 
			
		||||
            std::vector<DCSP_RESULT> res;
 | 
			
		||||
            p->RunSession(img, res);
 | 
			
		||||
 | 
			
		||||
			for (auto & re : res)
 | 
			
		||||
			{
 | 
			
		||||
				cv::rectangle(img, re.box, cv::Scalar(0, 0 , 255), 3);
 | 
			
		||||
                std::string label = p->classes[re.classId];
 | 
			
		||||
            for (auto &re: res) {
 | 
			
		||||
                cv::RNG rng(cv::getTickCount());
 | 
			
		||||
                cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
 | 
			
		||||
 | 
			
		||||
                cv::rectangle(img, re.box, color, 3);
 | 
			
		||||
                std::string label = p->classes[re.classId] + " " + std::to_string(re.confidence);
 | 
			
		||||
                cv::putText(
 | 
			
		||||
                        img,
 | 
			
		||||
                        label,
 | 
			
		||||
                        cv::Point(re.box.x, re.box.y - 5),
 | 
			
		||||
                        cv::FONT_HERSHEY_SIMPLEX,
 | 
			
		||||
                        0.75,
 | 
			
		||||
                        cv::Scalar(255, 255, 0),
 | 
			
		||||
                        color,
 | 
			
		||||
                        2
 | 
			
		||||
                );
 | 
			
		||||
			}
 | 
			
		||||
            cv::imshow("Result", img);
 | 
			
		||||
			cv::waitKey(0);
 | 
			
		||||
			cv::destroyAllWindows();
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
            }
 | 
			
		||||
            std::cout << "Press any key to exit" << std::endl;
 | 
			
		||||
            cv::imshow("Result of Detection", img);
 | 
			
		||||
            cv::waitKey(0);
 | 
			
		||||
            cv::destroyAllWindows();
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int read_coco_yaml(DCSP_CORE*& p)
 | 
			
		||||
{
 | 
			
		||||
int read_coco_yaml(DCSP_CORE *&p) {
 | 
			
		||||
    // Open the YAML file
 | 
			
		||||
    std::ifstream file("coco.yaml");
 | 
			
		||||
    if (!file.is_open()) {
 | 
			
		||||
@ -80,17 +79,19 @@ int read_coco_yaml(DCSP_CORE*& p)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
	DCSP_CORE* yoloDetector = new DCSP_CORE;
 | 
			
		||||
	std::string model_path = "yolov8n.onnx";
 | 
			
		||||
int main() {
 | 
			
		||||
    DCSP_CORE *yoloDetector = new DCSP_CORE;
 | 
			
		||||
    std::string model_path = "yolov8n.onnx";
 | 
			
		||||
    read_coco_yaml(yoloDetector);
 | 
			
		||||
	// GPU FP32 inference
 | 
			
		||||
	DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, true };
 | 
			
		||||
#ifdef USE_CUDA
 | 
			
		||||
    // GPU FP32 inference
 | 
			
		||||
    DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, true };
 | 
			
		||||
    // GPU FP16 inference
 | 
			
		||||
	// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640},  0.1, 0.5, true };
 | 
			
		||||
	// CPU inference
 | 
			
		||||
    // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, false };
 | 
			
		||||
    // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640},  0.1, 0.5, true };
 | 
			
		||||
#else
 | 
			
		||||
    // CPU inference
 | 
			
		||||
    DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
 | 
			
		||||
#endif
 | 
			
		||||
    yoloDetector->CreateSession(params);
 | 
			
		||||
	file_iterator(yoloDetector);
 | 
			
		||||
    file_iterator(yoloDetector);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user