Update YOLOv8-ONNXRuntime-CPP example with GPU inference (#4328)
Signed-off-by: Onuralp SEZER <thunderbirdtr@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
		@ -5,14 +5,14 @@ This repository features a collection of real-world applications and walkthrough
 | 
				
			|||||||
### Ultralytics YOLO Example Applications
 | 
					### Ultralytics YOLO Example Applications
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| Title                                                                                                          | Format             | Contributor                                                                               |
 | 
					| Title                                                                                                          | Format             | Contributor                                                                               |
 | 
				
			||||||
| -------------------------------------------------------------------------------------------------------------- | ------------------ | --------------------------------------------------- |
 | 
					| -------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------- |
 | 
				
			||||||
| [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference)                                               | C++/ONNX           | [Justas Bartnykas](https://github.com/JustasBart)                                         |
 | 
					| [YOLO ONNX Detection Inference with C++](./YOLOv8-CPP-Inference)                                               | C++/ONNX           | [Justas Bartnykas](https://github.com/JustasBart)                                         |
 | 
				
			||||||
| [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python)                                               | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro)                                       |
 | 
					| [YOLO OpenCV ONNX Detection Python](./YOLOv8-OpenCV-ONNX-Python)                                               | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro)                                       |
 | 
				
			||||||
| [YOLOv8 .NET ONNX ImageSharp](https://github.com/dme-compunet/YOLOv8)                                          | C#/ONNX/ImageSharp | [Compunet](https://github.com/dme-compunet)                                               |
 | 
					| [YOLOv8 .NET ONNX ImageSharp](https://github.com/dme-compunet/YOLOv8)                                          | C#/ONNX/ImageSharp | [Compunet](https://github.com/dme-compunet)                                               |
 | 
				
			||||||
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net)                                       | C# .Net            | [Samuel Stainback](https://github.com/sstainba)                                           |
 | 
					| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net)                                       | C# .Net            | [Samuel Stainback](https://github.com/sstainba)                                           |
 | 
				
			||||||
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python             | [Lakshantha](https://github.com/lakshanthad)                                              |
 | 
					| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python             | [Lakshantha](https://github.com/lakshanthad)                                              |
 | 
				
			||||||
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime)                                                              | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel)                                         |
 | 
					| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime)                                                              | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel)                                         |
 | 
				
			||||||
| [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP)                                                             | C++/ONNXRuntime    | [DennisJcy](https://github.com/DennisJcy)           |
 | 
					| [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP)                                                             | C++/ONNXRuntime    | [DennisJcy](https://github.com/DennisJcy), [Onuralp Sezer](https://github.com/onuralpszr) |
 | 
				
			||||||
| [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs)                              | C#/ONNX            | [Kayzwer](https://github.com/Kayzwer)                                                     |
 | 
					| [RTDETR ONNXRuntime C#](https://github.com/Kayzwer/yolo-cs/blob/master/RTDETR.cs)                              | C#/ONNX            | [Kayzwer](https://github.com/Kayzwer)                                                     |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### How to Contribute
 | 
					### How to Contribute
 | 
				
			||||||
 | 
				
			|||||||
@ -17,32 +17,37 @@ include_directories(${OpenCV_INCLUDE_DIRS})
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# -------------- Compile CUDA for FP16 inference if needed  ------------------#
 | 
					# -------------- Compile CUDA for FP16 inference if needed  ------------------#
 | 
				
			||||||
find_package(CUDA REQUIRED)
 | 
					option(USE_CUDA "Enable CUDA support" ON)
 | 
				
			||||||
include_directories(${CUDA_INCLUDE_DIRS})
 | 
					if (USE_CUDA)
 | 
				
			||||||
 | 
					    find_package(CUDA REQUIRED)
 | 
				
			||||||
 | 
					    include_directories(${CUDA_INCLUDE_DIRS})
 | 
				
			||||||
 | 
					    add_definitions(-DUSE_CUDA)
 | 
				
			||||||
 | 
					endif ()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# ONNXRUNTIME
 | 
					# ONNXRUNTIME
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Set ONNXRUNTIME_VERSION
 | 
					# Set ONNXRUNTIME_VERSION
 | 
				
			||||||
set(ONNXRUNTIME_VERSION 1.15.1)
 | 
					set(ONNXRUNTIME_VERSION 1.15.1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if(WIN32)
 | 
					if (WIN32)
 | 
				
			||||||
    # CPU
 | 
					    if (USE_CUDA)
 | 
				
			||||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
 | 
					 | 
				
			||||||
    # GPU
 | 
					 | 
				
			||||||
        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
					        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
elseif(LINUX)
 | 
					    else ()
 | 
				
			||||||
    # CPU
 | 
					        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-win-x64-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
 | 
					    endif ()
 | 
				
			||||||
    # GPU
 | 
					elseif (LINUX)
 | 
				
			||||||
 | 
					    if (USE_CUDA)
 | 
				
			||||||
        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
					        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
elseif(APPLE)
 | 
					    else ()
 | 
				
			||||||
 | 
					        set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-linux-x64-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
 | 
					    endif ()
 | 
				
			||||||
 | 
					elseif (APPLE)
 | 
				
			||||||
    set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}")
 | 
					    set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-arm64-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
    # Apple X64 binary
 | 
					    # Apple X64 binary
 | 
				
			||||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-x64-${ONNXRUNTIME_VERSION}")
 | 
					    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-x64-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
    # Apple Universal binary
 | 
					    # Apple Universal binary
 | 
				
			||||||
    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-universal2-${ONNXRUNTIME_VERSION}")
 | 
					    # set(ONNXRUNTIME_ROOT "${CMAKE_CURRENT_SOURCE_DIR}/onnxruntime-osx-universal2-${ONNXRUNTIME_VERSION}")
 | 
				
			||||||
endif()
 | 
					endif ()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
include_directories(${PROJECT_NAME} ${ONNXRUNTIME_ROOT}/include)
 | 
					include_directories(${PROJECT_NAME} ${ONNXRUNTIME_ROOT}/include)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -54,21 +59,27 @@ set(PROJECT_SOURCES
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
 | 
					add_executable(${PROJECT_NAME} ${PROJECT_SOURCES})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if(WIN32)
 | 
					if (WIN32)
 | 
				
			||||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib ${CUDA_LIBRARIES})
 | 
					    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/onnxruntime.lib)
 | 
				
			||||||
elseif(LINUX)
 | 
					    if (USE_CUDA)
 | 
				
			||||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so ${CUDA_LIBRARIES})
 | 
					        target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
 | 
				
			||||||
elseif(APPLE)
 | 
					    endif ()
 | 
				
			||||||
 | 
					elseif (LINUX)
 | 
				
			||||||
 | 
					    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.so)
 | 
				
			||||||
 | 
					    if (USE_CUDA)
 | 
				
			||||||
 | 
					        target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
 | 
				
			||||||
 | 
					    endif ()
 | 
				
			||||||
 | 
					elseif (APPLE)
 | 
				
			||||||
    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
 | 
					    target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${ONNXRUNTIME_ROOT}/lib/libonnxruntime.dylib)
 | 
				
			||||||
endif()
 | 
					endif ()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# For windows system, copy onnxruntime.dll to the same folder of the executable file
 | 
					# For windows system, copy onnxruntime.dll to the same folder of the executable file
 | 
				
			||||||
if(WIN32)
 | 
					if (WIN32)
 | 
				
			||||||
    add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
 | 
					    add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
 | 
				
			||||||
            COMMAND ${CMAKE_COMMAND} -E copy_if_different
 | 
					            COMMAND ${CMAKE_COMMAND} -E copy_if_different
 | 
				
			||||||
            "${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
 | 
					            "${ONNXRUNTIME_ROOT}/lib/onnxruntime.dll"
 | 
				
			||||||
            $<TARGET_FILE_DIR:${PROJECT_NAME}>)
 | 
					            $<TARGET_FILE_DIR:${PROJECT_NAME}>)
 | 
				
			||||||
endif()
 | 
					endif ()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
 | 
					# Download https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml
 | 
				
			||||||
# and put it in the same folder of the executable file
 | 
					# and put it in the same folder of the executable file
 | 
				
			||||||
 | 
				
			|||||||
@ -28,16 +28,23 @@ Alternatively, you can use the following command for exporting the model in the
 | 
				
			|||||||
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
 | 
					yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Download COCO.yaml file
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Dependencies
 | 
					## Dependencies
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| Dependency                       | Version       |
 | 
					| Dependency                       | Version       |
 | 
				
			||||||
| -------------------------------- | -------- |
 | 
					| -------------------------------- | ------------- |
 | 
				
			||||||
| Onnxruntime(linux,windows,macos) | >=1.14.1      |
 | 
					| Onnxruntime(linux,windows,macos) | >=1.14.1      |
 | 
				
			||||||
| OpenCV                           | >=4.0.0       |
 | 
					| OpenCV                           | >=4.0.0       |
 | 
				
			||||||
| C++                              | >=17          |
 | 
					| C++                              | >=17          |
 | 
				
			||||||
| Cmake                            | >=3.5         |
 | 
					| Cmake                            | >=3.5         |
 | 
				
			||||||
 | 
					| Cuda (Optional)                  | >=11.4,\<12.0 |
 | 
				
			||||||
 | 
					| cuDNN (Cuda required)            | =8            |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
 | 
					Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
 | 
				
			||||||
 | 
					Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Usage
 | 
					## Usage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -3,39 +3,35 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#define benchmark
 | 
					#define benchmark
 | 
				
			||||||
 | 
					
 | 
				
			||||||
DCSP_CORE::DCSP_CORE()
 | 
					DCSP_CORE::DCSP_CORE() {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
DCSP_CORE::~DCSP_CORE()
 | 
					DCSP_CORE::~DCSP_CORE() {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    delete session;
 | 
					    delete session;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#ifdef USE_CUDA
 | 
				
			||||||
namespace Ort
 | 
					namespace Ort
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    template<>
 | 
					    template<>
 | 
				
			||||||
    struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
 | 
					    struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<typename T>
 | 
					template<typename T>
 | 
				
			||||||
char* BlobFromImage(cv::Mat& iImg, T& iBlob)
 | 
					char *BlobFromImage(cv::Mat &iImg, T &iBlob) {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    int channels = iImg.channels();
 | 
					    int channels = iImg.channels();
 | 
				
			||||||
    int imgHeight = iImg.rows;
 | 
					    int imgHeight = iImg.rows;
 | 
				
			||||||
    int imgWidth = iImg.cols;
 | 
					    int imgWidth = iImg.cols;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	for (int c = 0; c < channels; c++)
 | 
					    for (int c = 0; c < channels; c++) {
 | 
				
			||||||
	{
 | 
					        for (int h = 0; h < imgHeight; h++) {
 | 
				
			||||||
		for (int h = 0; h < imgHeight; h++)
 | 
					            for (int w = 0; w < imgWidth; w++) {
 | 
				
			||||||
		{
 | 
					                iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
 | 
				
			||||||
			for (int w = 0; w < imgWidth; w++)
 | 
					                        (iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
 | 
				
			||||||
			{
 | 
					 | 
				
			||||||
				iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
 | 
					 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
@ -43,12 +39,10 @@ char* BlobFromImage(cv::Mat& iImg, T& iBlob)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
 | 
					char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    cv::Mat img = iImg.clone();
 | 
					    cv::Mat img = iImg.clone();
 | 
				
			||||||
    cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
 | 
					    cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
 | 
				
			||||||
    if (img.channels() == 1)
 | 
					    if (img.channels() == 1) {
 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
        cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
 | 
					        cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
 | 
					    cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
 | 
				
			||||||
@ -56,27 +50,23 @@ char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
 | 
					char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) {
 | 
				
			||||||
{
 | 
					    char *Ret = RET_OK;
 | 
				
			||||||
	char* Ret = RET_OK;
 | 
					 | 
				
			||||||
    std::regex pattern("[\u4e00-\u9fa5]");
 | 
					    std::regex pattern("[\u4e00-\u9fa5]");
 | 
				
			||||||
    bool result = std::regex_search(iParams.ModelPath, pattern);
 | 
					    bool result = std::regex_search(iParams.ModelPath, pattern);
 | 
				
			||||||
	if (result)
 | 
					    if (result) {
 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
        Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
 | 
					        Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
 | 
				
			||||||
        std::cout << Ret << std::endl;
 | 
					        std::cout << Ret << std::endl;
 | 
				
			||||||
        return Ret;
 | 
					        return Ret;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
	try
 | 
					    try {
 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
        rectConfidenceThreshold = iParams.RectConfidenceThreshold;
 | 
					        rectConfidenceThreshold = iParams.RectConfidenceThreshold;
 | 
				
			||||||
        iouThreshold = iParams.iouThreshold;
 | 
					        iouThreshold = iParams.iouThreshold;
 | 
				
			||||||
        imgSize = iParams.imgSize;
 | 
					        imgSize = iParams.imgSize;
 | 
				
			||||||
        modelType = iParams.ModelType;
 | 
					        modelType = iParams.ModelType;
 | 
				
			||||||
        env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
 | 
					        env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
 | 
				
			||||||
        Ort::SessionOptions sessionOption;
 | 
					        Ort::SessionOptions sessionOption;
 | 
				
			||||||
		if (iParams.CudaEnable)
 | 
					        if (iParams.CudaEnable) {
 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
            cudaEnable = iParams.CudaEnable;
 | 
					            cudaEnable = iParams.CudaEnable;
 | 
				
			||||||
            OrtCUDAProviderOptions cudaOption;
 | 
					            OrtCUDAProviderOptions cudaOption;
 | 
				
			||||||
            cudaOption.device_id = 0;
 | 
					            cudaOption.device_id = 0;
 | 
				
			||||||
@ -93,37 +83,34 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
 | 
				
			|||||||
        wide_cstr[ModelPathSize] = L'\0';
 | 
					        wide_cstr[ModelPathSize] = L'\0';
 | 
				
			||||||
        const wchar_t* modelPath = wide_cstr;
 | 
					        const wchar_t* modelPath = wide_cstr;
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
		const char* modelPath = iParams.ModelPath.c_str();
 | 
					        const char *modelPath = iParams.ModelPath.c_str();
 | 
				
			||||||
#endif // _WIN32
 | 
					#endif // _WIN32
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        session = new Ort::Session(env, modelPath, sessionOption);
 | 
					        session = new Ort::Session(env, modelPath, sessionOption);
 | 
				
			||||||
        Ort::AllocatorWithDefaultOptions allocator;
 | 
					        Ort::AllocatorWithDefaultOptions allocator;
 | 
				
			||||||
        size_t inputNodesNum = session->GetInputCount();
 | 
					        size_t inputNodesNum = session->GetInputCount();
 | 
				
			||||||
		for (size_t i = 0; i < inputNodesNum; i++)
 | 
					        for (size_t i = 0; i < inputNodesNum; i++) {
 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
            Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
 | 
					            Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
 | 
				
			||||||
			char* temp_buf = new char[50];
 | 
					            char *temp_buf = new char[50];
 | 
				
			||||||
            strcpy(temp_buf, input_node_name.get());
 | 
					            strcpy(temp_buf, input_node_name.get());
 | 
				
			||||||
            inputNodeNames.push_back(temp_buf);
 | 
					            inputNodeNames.push_back(temp_buf);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        size_t OutputNodesNum = session->GetOutputCount();
 | 
					        size_t OutputNodesNum = session->GetOutputCount();
 | 
				
			||||||
		for (size_t i = 0; i < OutputNodesNum; i++)
 | 
					        for (size_t i = 0; i < OutputNodesNum; i++) {
 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
            Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
 | 
					            Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
 | 
				
			||||||
			char* temp_buf = new char[10];
 | 
					            char *temp_buf = new char[10];
 | 
				
			||||||
            strcpy(temp_buf, output_node_name.get());
 | 
					            strcpy(temp_buf, output_node_name.get());
 | 
				
			||||||
            outputNodeNames.push_back(temp_buf);
 | 
					            outputNodeNames.push_back(temp_buf);
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
		options = Ort::RunOptions{ nullptr };
 | 
					        options = Ort::RunOptions{nullptr};
 | 
				
			||||||
        WarmUpSession();
 | 
					        WarmUpSession();
 | 
				
			||||||
        return RET_OK;
 | 
					        return RET_OK;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
	catch (const std::exception& e)
 | 
					    catch (const std::exception &e) {
 | 
				
			||||||
	{
 | 
					        const char *str1 = "[DCSP_ONNX]:";
 | 
				
			||||||
		const char* str1 = "[DCSP_ONNX]:";
 | 
					        const char *str2 = e.what();
 | 
				
			||||||
		const char* str2 = e.what();
 | 
					 | 
				
			||||||
        std::string result = std::string(str1) + std::string(str2);
 | 
					        std::string result = std::string(str1) + std::string(str2);
 | 
				
			||||||
		char* merged = new char[result.length() + 1];
 | 
					        char *merged = new char[result.length() + 1];
 | 
				
			||||||
        std::strcpy(merged, result.c_str());
 | 
					        std::strcpy(merged, result.c_str());
 | 
				
			||||||
        std::cout << merged << std::endl;
 | 
					        std::cout << merged << std::endl;
 | 
				
			||||||
        delete[] merged;
 | 
					        delete[] merged;
 | 
				
			||||||
@ -133,28 +120,26 @@ char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
 | 
					char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
#ifdef benchmark
 | 
					#ifdef benchmark
 | 
				
			||||||
    clock_t starttime_1 = clock();
 | 
					    clock_t starttime_1 = clock();
 | 
				
			||||||
#endif // benchmark
 | 
					#endif // benchmark
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	char* Ret = RET_OK;
 | 
					    char *Ret = RET_OK;
 | 
				
			||||||
    cv::Mat processedImg;
 | 
					    cv::Mat processedImg;
 | 
				
			||||||
    PostProcess(iImg, imgSize, processedImg);
 | 
					    PostProcess(iImg, imgSize, processedImg);
 | 
				
			||||||
	if (modelType < 4)
 | 
					    if (modelType < 4) {
 | 
				
			||||||
	{
 | 
					        float *blob = new float[processedImg.total() * 3];
 | 
				
			||||||
		float* blob = new float[processedImg.total() * 3];
 | 
					 | 
				
			||||||
        BlobFromImage(processedImg, blob);
 | 
					        BlobFromImage(processedImg, blob);
 | 
				
			||||||
		std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
					        std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)};
 | 
				
			||||||
        TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
					        TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
				
			||||||
	}
 | 
					    } else {
 | 
				
			||||||
	else
 | 
					#ifdef USE_CUDA
 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
        half* blob = new half[processedImg.total() * 3];
 | 
					        half* blob = new half[processedImg.total() * 3];
 | 
				
			||||||
        BlobFromImage(processedImg, blob);
 | 
					        BlobFromImage(processedImg, blob);
 | 
				
			||||||
        std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
					        std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
				
			||||||
        TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
					        TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return Ret;
 | 
					    return Ret;
 | 
				
			||||||
@ -162,24 +147,26 @@ char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
template<typename N>
 | 
					template<typename N>
 | 
				
			||||||
char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims,  std::vector<DCSP_RESULT>& oResult)
 | 
					char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
 | 
				
			||||||
{
 | 
					                               std::vector<DCSP_RESULT> &oResult) {
 | 
				
			||||||
    Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
 | 
					    Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
 | 
				
			||||||
 | 
					            Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
 | 
				
			||||||
 | 
					            inputNodeDims.data(), inputNodeDims.size());
 | 
				
			||||||
#ifdef benchmark
 | 
					#ifdef benchmark
 | 
				
			||||||
    clock_t starttime_2 = clock();
 | 
					    clock_t starttime_2 = clock();
 | 
				
			||||||
#endif // benchmark
 | 
					#endif // benchmark
 | 
				
			||||||
	auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size());
 | 
					    auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
 | 
				
			||||||
 | 
					                                     outputNodeNames.size());
 | 
				
			||||||
#ifdef benchmark
 | 
					#ifdef benchmark
 | 
				
			||||||
    clock_t starttime_3 = clock();
 | 
					    clock_t starttime_3 = clock();
 | 
				
			||||||
#endif // benchmark
 | 
					#endif // benchmark
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
 | 
					    Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
 | 
				
			||||||
    auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
 | 
					    auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
 | 
				
			||||||
	std::vector<int64_t>outputNodeDims = tensor_info.GetShape();
 | 
					    std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
 | 
				
			||||||
    auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
 | 
					    auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
 | 
				
			||||||
    delete blob;
 | 
					    delete blob;
 | 
				
			||||||
	switch (modelType)
 | 
					    switch (modelType) {
 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
        case 1://V8_ORIGIN_FP32
 | 
					        case 1://V8_ORIGIN_FP32
 | 
				
			||||||
        case 4://V8_ORIGIN_FP16
 | 
					        case 4://V8_ORIGIN_FP16
 | 
				
			||||||
        {
 | 
					        {
 | 
				
			||||||
@ -191,19 +178,17 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
 | 
				
			|||||||
            cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
 | 
					            cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
 | 
				
			||||||
            rowData = rowData.t();
 | 
					            rowData = rowData.t();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		float* data = (float*)rowData.data;
 | 
					            float *data = (float *) rowData.data;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            float x_factor = iImg.cols / 640.;
 | 
					            float x_factor = iImg.cols / 640.;
 | 
				
			||||||
            float y_factor = iImg.rows / 640.;
 | 
					            float y_factor = iImg.rows / 640.;
 | 
				
			||||||
		for (int i = 0; i < strideNum; ++i)
 | 
					            for (int i = 0; i < strideNum; ++i) {
 | 
				
			||||||
		{
 | 
					                float *classesScores = data + 4;
 | 
				
			||||||
			float* classesScores = data + 4;
 | 
					 | 
				
			||||||
                cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
 | 
					                cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
 | 
				
			||||||
                cv::Point class_id;
 | 
					                cv::Point class_id;
 | 
				
			||||||
                double maxClassScore;
 | 
					                double maxClassScore;
 | 
				
			||||||
                cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
 | 
					                cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
 | 
				
			||||||
			if (maxClassScore > rectConfidenceThreshold)
 | 
					                if (maxClassScore > rectConfidenceThreshold) {
 | 
				
			||||||
			{
 | 
					 | 
				
			||||||
                    confidences.push_back(maxClassScore);
 | 
					                    confidences.push_back(maxClassScore);
 | 
				
			||||||
                    class_ids.push_back(class_id.x);
 | 
					                    class_ids.push_back(class_id.x);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -226,8 +211,7 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
 | 
				
			|||||||
            std::vector<int> nmsResult;
 | 
					            std::vector<int> nmsResult;
 | 
				
			||||||
            cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
 | 
					            cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		for (int i = 0; i < nmsResult.size(); ++i)
 | 
					            for (int i = 0; i < nmsResult.size(); ++i) {
 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
                int idx = nmsResult[i];
 | 
					                int idx = nmsResult[i];
 | 
				
			||||||
                DCSP_RESULT result;
 | 
					                DCSP_RESULT result;
 | 
				
			||||||
                result.classId = class_ids[idx];
 | 
					                result.classId = class_ids[idx];
 | 
				
			||||||
@ -239,16 +223,15 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#ifdef benchmark
 | 
					#ifdef benchmark
 | 
				
			||||||
            clock_t starttime_4 = clock();
 | 
					            clock_t starttime_4 = clock();
 | 
				
			||||||
		double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
					            double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
				
			||||||
		double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
 | 
					            double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
 | 
				
			||||||
		double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
 | 
					            double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
 | 
				
			||||||
		if (cudaEnable)
 | 
					            if (cudaEnable) {
 | 
				
			||||||
		{
 | 
					                std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time
 | 
				
			||||||
			std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
					                          << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
				
			||||||
		}
 | 
					            } else {
 | 
				
			||||||
		else
 | 
					                std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time
 | 
				
			||||||
		{
 | 
					                          << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
				
			||||||
			std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
 | 
					 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
#endif // benchmark
 | 
					#endif // benchmark
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -259,29 +242,28 @@ char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
char* DCSP_CORE::WarmUpSession()
 | 
					char *DCSP_CORE::WarmUpSession() {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    clock_t starttime_1 = clock();
 | 
					    clock_t starttime_1 = clock();
 | 
				
			||||||
    cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
 | 
					    cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
 | 
				
			||||||
    cv::Mat processedImg;
 | 
					    cv::Mat processedImg;
 | 
				
			||||||
    PostProcess(iImg, imgSize, processedImg);
 | 
					    PostProcess(iImg, imgSize, processedImg);
 | 
				
			||||||
	if (modelType < 4)
 | 
					    if (modelType < 4) {
 | 
				
			||||||
	{
 | 
					        float *blob = new float[iImg.total() * 3];
 | 
				
			||||||
		float* blob = new float[iImg.total() * 3];
 | 
					 | 
				
			||||||
        BlobFromImage(processedImg, blob);
 | 
					        BlobFromImage(processedImg, blob);
 | 
				
			||||||
		std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
					        std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)};
 | 
				
			||||||
		Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
 | 
					        Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
 | 
				
			||||||
		auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
 | 
					                Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
 | 
				
			||||||
 | 
					                YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
 | 
				
			||||||
 | 
					        auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
 | 
				
			||||||
 | 
					                                           outputNodeNames.size());
 | 
				
			||||||
        delete[] blob;
 | 
					        delete[] blob;
 | 
				
			||||||
        clock_t starttime_4 = clock();
 | 
					        clock_t starttime_4 = clock();
 | 
				
			||||||
		double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
					        double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
 | 
				
			||||||
		if (cudaEnable)
 | 
					        if (cudaEnable) {
 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
            std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
					            std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
	}
 | 
					    } else {
 | 
				
			||||||
	else
 | 
					#ifdef USE_CUDA
 | 
				
			||||||
	{
 | 
					 | 
				
			||||||
        half* blob = new half[iImg.total() * 3];
 | 
					        half* blob = new half[iImg.total() * 3];
 | 
				
			||||||
        BlobFromImage(processedImg, blob);
 | 
					        BlobFromImage(processedImg, blob);
 | 
				
			||||||
        std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
					        std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
 | 
				
			||||||
@ -294,6 +276,7 @@ char* DCSP_CORE::WarmUpSession()
 | 
				
			|||||||
        {
 | 
					        {
 | 
				
			||||||
            std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
					            std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    return RET_OK;
 | 
					    return RET_OK;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
				
			|||||||
@ -13,11 +13,13 @@
 | 
				
			|||||||
#include <cstdio>
 | 
					#include <cstdio>
 | 
				
			||||||
#include <opencv2/opencv.hpp>
 | 
					#include <opencv2/opencv.hpp>
 | 
				
			||||||
#include "onnxruntime_cxx_api.h"
 | 
					#include "onnxruntime_cxx_api.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#ifdef USE_CUDA
 | 
				
			||||||
#include <cuda_fp16.h>
 | 
					#include <cuda_fp16.h>
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
enum MODEL_TYPE
 | 
					enum MODEL_TYPE {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    //FLOAT32 MODEL
 | 
					    //FLOAT32 MODEL
 | 
				
			||||||
    YOLO_ORIGIN_V5 = 0,
 | 
					    YOLO_ORIGIN_V5 = 0,
 | 
				
			||||||
    YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
 | 
					    YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
 | 
				
			||||||
@ -29,53 +31,51 @@ enum MODEL_TYPE
 | 
				
			|||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					typedef struct _DCSP_INIT_PARAM {
 | 
				
			||||||
typedef struct _DCSP_INIT_PARAM
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    std::string ModelPath;
 | 
					    std::string ModelPath;
 | 
				
			||||||
    MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
 | 
					    MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
 | 
				
			||||||
	std::vector<int>						imgSize={640, 640};
 | 
					    std::vector<int> imgSize = {640, 640};
 | 
				
			||||||
    float RectConfidenceThreshold = 0.6;
 | 
					    float RectConfidenceThreshold = 0.6;
 | 
				
			||||||
    float iouThreshold = 0.5;
 | 
					    float iouThreshold = 0.5;
 | 
				
			||||||
    bool CudaEnable = false;
 | 
					    bool CudaEnable = false;
 | 
				
			||||||
    int LogSeverityLevel = 3;
 | 
					    int LogSeverityLevel = 3;
 | 
				
			||||||
    int IntraOpNumThreads = 1;
 | 
					    int IntraOpNumThreads = 1;
 | 
				
			||||||
}DCSP_INIT_PARAM;
 | 
					} DCSP_INIT_PARAM;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
typedef struct _DCSP_RESULT
 | 
					typedef struct _DCSP_RESULT {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    int classId;
 | 
					    int classId;
 | 
				
			||||||
    float confidence;
 | 
					    float confidence;
 | 
				
			||||||
    cv::Rect box;
 | 
					    cv::Rect box;
 | 
				
			||||||
}DCSP_RESULT;
 | 
					} DCSP_RESULT;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class DCSP_CORE
 | 
					class DCSP_CORE {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
    DCSP_CORE();
 | 
					    DCSP_CORE();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ~DCSP_CORE();
 | 
					    ~DCSP_CORE();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
public:
 | 
					public:
 | 
				
			||||||
	char* CreateSession(DCSP_INIT_PARAM &iParams);
 | 
					    char *CreateSession(DCSP_INIT_PARAM &iParams);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	char* RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult);
 | 
					    char *RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	char* WarmUpSession();
 | 
					    char *WarmUpSession();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    template<typename N>
 | 
					    template<typename N>
 | 
				
			||||||
	char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult);
 | 
					    char *TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
 | 
				
			||||||
 | 
					                        std::vector<DCSP_RESULT> &oResult);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    std::vector<std::string> classes{};
 | 
					    std::vector<std::string> classes{};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
private:
 | 
					private:
 | 
				
			||||||
    Ort::Env env;
 | 
					    Ort::Env env;
 | 
				
			||||||
	Ort::Session*			session;
 | 
					    Ort::Session *session;
 | 
				
			||||||
    bool cudaEnable;
 | 
					    bool cudaEnable;
 | 
				
			||||||
    Ort::RunOptions options;
 | 
					    Ort::RunOptions options;
 | 
				
			||||||
	std::vector<const char*> inputNodeNames;
 | 
					    std::vector<const char *> inputNodeNames;
 | 
				
			||||||
	std::vector<const char*> outputNodeNames;
 | 
					    std::vector<const char *> outputNodeNames;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    MODEL_TYPE modelType;
 | 
					    MODEL_TYPE modelType;
 | 
				
			||||||
    std::vector<int> imgSize;
 | 
					    std::vector<int> imgSize;
 | 
				
			||||||
 | 
				
			|||||||
@ -3,42 +3,41 @@
 | 
				
			|||||||
#include <filesystem>
 | 
					#include <filesystem>
 | 
				
			||||||
#include <fstream>
 | 
					#include <fstream>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void file_iterator(DCSP_CORE*& p)
 | 
					void file_iterator(DCSP_CORE *&p) {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    std::filesystem::path current_path = std::filesystem::current_path();
 | 
					    std::filesystem::path current_path = std::filesystem::current_path();
 | 
				
			||||||
	std::filesystem::path imgs_path = current_path/"images";
 | 
					    std::filesystem::path imgs_path = current_path / "images";
 | 
				
			||||||
	for (auto& i : std::filesystem::directory_iterator(imgs_path))
 | 
					    for (auto &i: std::filesystem::directory_iterator(imgs_path)) {
 | 
				
			||||||
	{
 | 
					        if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg") {
 | 
				
			||||||
		if (i.path().extension() == ".jpg" || i.path().extension() == ".png")
 | 
					 | 
				
			||||||
		{
 | 
					 | 
				
			||||||
            std::string img_path = i.path().string();
 | 
					            std::string img_path = i.path().string();
 | 
				
			||||||
            cv::Mat img = cv::imread(img_path);
 | 
					            cv::Mat img = cv::imread(img_path);
 | 
				
			||||||
            std::vector<DCSP_RESULT> res;
 | 
					            std::vector<DCSP_RESULT> res;
 | 
				
			||||||
            p->RunSession(img, res);
 | 
					            p->RunSession(img, res);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
			for (auto & re : res)
 | 
					            for (auto &re: res) {
 | 
				
			||||||
			{
 | 
					                cv::RNG rng(cv::getTickCount());
 | 
				
			||||||
				cv::rectangle(img, re.box, cv::Scalar(0, 0 , 255), 3);
 | 
					                cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
 | 
				
			||||||
                std::string label = p->classes[re.classId];
 | 
					
 | 
				
			||||||
 | 
					                cv::rectangle(img, re.box, color, 3);
 | 
				
			||||||
 | 
					                std::string label = p->classes[re.classId] + " " + std::to_string(re.confidence);
 | 
				
			||||||
                cv::putText(
 | 
					                cv::putText(
 | 
				
			||||||
                        img,
 | 
					                        img,
 | 
				
			||||||
                        label,
 | 
					                        label,
 | 
				
			||||||
                        cv::Point(re.box.x, re.box.y - 5),
 | 
					                        cv::Point(re.box.x, re.box.y - 5),
 | 
				
			||||||
                        cv::FONT_HERSHEY_SIMPLEX,
 | 
					                        cv::FONT_HERSHEY_SIMPLEX,
 | 
				
			||||||
                        0.75,
 | 
					                        0.75,
 | 
				
			||||||
                        cv::Scalar(255, 255, 0),
 | 
					                        color,
 | 
				
			||||||
                        2
 | 
					                        2
 | 
				
			||||||
                );
 | 
					                );
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
            cv::imshow("Result", img);
 | 
					            std::cout << "Press any key to exit" << std::endl;
 | 
				
			||||||
 | 
					            cv::imshow("Result of Detection", img);
 | 
				
			||||||
            cv::waitKey(0);
 | 
					            cv::waitKey(0);
 | 
				
			||||||
            cv::destroyAllWindows();
 | 
					            cv::destroyAllWindows();
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
int read_coco_yaml(DCSP_CORE*& p)
 | 
					int read_coco_yaml(DCSP_CORE *&p) {
 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    // Open the YAML file
 | 
					    // Open the YAML file
 | 
				
			||||||
    std::ifstream file("coco.yaml");
 | 
					    std::ifstream file("coco.yaml");
 | 
				
			||||||
    if (!file.is_open()) {
 | 
					    if (!file.is_open()) {
 | 
				
			||||||
@ -80,17 +79,19 @@ int read_coco_yaml(DCSP_CORE*& p)
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
int main()
 | 
					int main() {
 | 
				
			||||||
{
 | 
					    DCSP_CORE *yoloDetector = new DCSP_CORE;
 | 
				
			||||||
	DCSP_CORE* yoloDetector = new DCSP_CORE;
 | 
					 | 
				
			||||||
    std::string model_path = "yolov8n.onnx";
 | 
					    std::string model_path = "yolov8n.onnx";
 | 
				
			||||||
    read_coco_yaml(yoloDetector);
 | 
					    read_coco_yaml(yoloDetector);
 | 
				
			||||||
 | 
					#ifdef USE_CUDA
 | 
				
			||||||
    // GPU FP32 inference
 | 
					    // GPU FP32 inference
 | 
				
			||||||
    DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, true };
 | 
					    DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, true };
 | 
				
			||||||
    // GPU FP16 inference
 | 
					    // GPU FP16 inference
 | 
				
			||||||
    // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640},  0.1, 0.5, true };
 | 
					    // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640},  0.1, 0.5, true };
 | 
				
			||||||
 | 
					#else
 | 
				
			||||||
    // CPU inference
 | 
					    // CPU inference
 | 
				
			||||||
    // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, false };
 | 
					    DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
    yoloDetector->CreateSession(params);
 | 
					    yoloDetector->CreateSession(params);
 | 
				
			||||||
    file_iterator(yoloDetector);
 | 
					    file_iterator(yoloDetector);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user