Add benchmarks to Docker publish workflow (#3931)

single_channel
Glenn Jocher 1 year ago committed by GitHub
parent 2ee147838a
commit 9f5ab67ba2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -109,25 +109,17 @@ jobs:
pip --version
pip list
- name: Benchmark DetectionModel
shell: python
run: |
from ultralytics.utils.benchmarks import benchmark
benchmark(model='path with spaces/${{ matrix.model }}.pt', imgsz=160, half=False, hard_fail=0.26)
shell: bash
run: yolo benchmark model='path with spaces/${{ matrix.model }}.pt' imgsz=160, verbose=0.26
- name: Benchmark SegmentationModel
shell: python
run: |
from ultralytics.utils.benchmarks import benchmark
benchmark(model='path with spaces/${{ matrix.model }}-seg.pt', imgsz=160, half=False, hard_fail=0.30)
shell: bash
run: yolo benchmark model='path with spaces/${{ matrix.model }}-seg.pt' imgsz=160, verbose=0.30
- name: Benchmark ClassificationModel
shell: python
run: |
from ultralytics.utils.benchmarks import benchmark
benchmark(model='path with spaces/${{ matrix.model }}-cls.pt', imgsz=160, half=False, hard_fail=0.36)
shell: bash
run: yolo benchmark model='path with spaces/${{ matrix.model }}-cls.pt' imgsz=160, verbose=0.36
- name: Benchmark PoseModel
shell: python
run: |
from ultralytics.utils.benchmarks import benchmark
benchmark(model='path with spaces/${{ matrix.model }}-pose.pt', imgsz=160, half=False, hard_fail=0.17)
shell: bash
run: yolo benchmark model='path with spaces/${{ matrix.model }}-pose.pt' imgsz=160, verbose=0.17
- name: Benchmark Summary
run: |
cat benchmarks.log

@ -76,7 +76,7 @@ jobs:
- name: Run Benchmarks
if: matrix.platforms == 'linux/amd64' # arm64 images not supported on GitHub CI runners
run: |
docker run ultralytics/ultralytics:${{ matrix.tags }} yolo benchmark model=yolov8n.pt imgsz=160
docker run ultralytics/ultralytics:${{ matrix.tags }} yolo benchmark model=yolov8n.pt imgsz=160 verbose=0.26
- name: Push Image
if: github.event_name == 'push' || github.event.inputs.push == true

@ -30,7 +30,15 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . albumentations comet thop pycocotools onnx onnx-simplifier onnxruntime-gpu
RUN pip install --no-cache -e '.[export]' thop albumentations comet pycocotools
# Run exports to AutoInstall packages
RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32
RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32
# Requires <= Python 3.10, bug with paddlepaddle==2.5.0
RUN pip install --no-cache paddlepaddle==2.4.2 x2paddle
# Remove exported models
RUN rm -rf tmp
# Set environment variables
ENV OMP_NUM_THREADS=1

@ -28,8 +28,15 @@ RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . thop --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache -e '.[export]' thop --extra-index-url https://download.pytorch.org/whl/cpu
# Run exports to AutoInstall packages
RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32
RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32
# Requires <= Python 3.10, bug with paddlepaddle==2.5.0
# RUN pip install --no-cache paddlepaddle==2.4.2 x2paddle
# Remove exported models
RUN rm -rf tmp
# Usage Examples -------------------------------------------------------------------------------------------------------

@ -31,15 +31,12 @@ RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e '.[export]' thop --extra-index-url https://download.pytorch.org/whl/cpu
# Run exports to AutoInstall packages
WORKDIR /tmp_exports
RUN yolo export format=edgetpu imgsz=32
RUN yolo export format=ncnn imgsz=32
RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32
RUN yolo export model=tmp/yolov8n.pt format=ncnn imgsz=32
# Requires <= Python 3.10, bug with paddlepaddle==2.5.0
RUN pip install --no-cache paddlepaddle==2.4.2 x2paddle
# Reset workdir
WORKDIR /usr/src/ultralytics
RUN rm -rf /tmp_exports
# Remove exported models
RUN rm -rf tmp
# Usage Examples -------------------------------------------------------------------------------------------------------

@ -40,18 +40,18 @@ full list of export arguments.
## Arguments
Arguments such as `model`, `data`, `imgsz`, `half`, `device`, and `hard_fail` provide users with the flexibility to fine-tune
Arguments such as `model`, `data`, `imgsz`, `half`, `device`, and `verbose` provide users with the flexibility to fine-tune
the benchmarks to their specific needs and compare the performance of different export formats with ease.
| Key | Value | Description |
|-------------|---------|----------------------------------------------------------------------------|
| `model` | `None` | path to model file, i.e. yolov8n.pt, yolov8n.yaml |
| `data` | `None` | path to yaml referencing the benchmarking dataset (under `val` label) |
| `imgsz` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `False` | FP16 quantization |
| `int8` | `False` | INT8 quantization |
| `device` | `None` | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
| `hard_fail` | `False` | do not continue on error (bool), or val floor threshold (float) |
| Key | Value | Description |
|-----------|---------|-----------------------------------------------------------------------|
| `model` | `None` | path to model file, i.e. yolov8n.pt, yolov8n.yaml |
| `data` | `None` | path to yaml referencing the benchmarking dataset (under `val` label) |
| `imgsz` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `False` | FP16 quantization |
| `int8` | `False` | INT8 quantization |
| `device` | `None` | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
| `verbose` | `False` | do not continue on error (bool), or val floor threshold (float) |
## Export Formats

@ -319,7 +319,11 @@ class YOLO:
overrides.update(kwargs)
overrides['mode'] = 'benchmark'
overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults
return benchmark(model=self, imgsz=overrides['imgsz'], half=overrides['half'], device=overrides['device'])
return benchmark(model=self,
imgsz=overrides['imgsz'],
half=overrides['half'],
device=overrides['device'],
verbose=overrides['verbose'])
def export(self, **kwargs):
"""

@ -26,6 +26,7 @@ ncnn | `ncnn` | yolov8n_ncnn_model/
import glob
import platform
import sys
import time
from pathlib import Path
@ -49,7 +50,7 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
half=False,
int8=False,
device='cpu',
hard_fail=False):
verbose=False):
"""
Benchmark a YOLO model across different formats for speed and accuracy.
@ -61,7 +62,7 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
half (bool, optional): Use half-precision for the model if True. Default is False.
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
verbose (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
Default is False.
Returns:
@ -84,6 +85,8 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
assert i != 9 or LINUX, 'Edge TPU export only supported on Linux'
if i == 10:
assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux'
elif i == 11:
assert sys.version_info < (3, 11), 'PaddlePaddle export only supported on Python<=3.10'
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'
if 'cuda' in device.type:
@ -121,7 +124,7 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
metric, speed = results.results_dict[key], results.speed['inference']
y.append([name, '', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
except Exception as e:
if hard_fail:
if verbose:
assert type(e) is AssertionError, f'Benchmark failure for {name}: {e}'
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference
@ -136,9 +139,9 @@ def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f:
f.write(s)
if hard_fail and isinstance(hard_fail, float):
if verbose and isinstance(verbose, float):
metrics = df[key].array # values to compare to floor
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
floor = verbose # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f'Benchmark failure: metric(s) < floor {floor}'
return df

@ -28,7 +28,7 @@ TORCHVISION_0_10 = check_version(torchvision.__version__, '0.10.0')
TORCH_1_9 = check_version(torch.__version__, '1.9.0')
TORCH_1_11 = check_version(torch.__version__, '1.11.0')
TORCH_1_12 = check_version(torch.__version__, '1.12.0')
TORCH_2_0 = check_version(torch.__version__, minimum='2.0')
TORCH_2_0 = check_version(torch.__version__, '2.0.0')
@contextmanager

Loading…
Cancel
Save