Smart Model loading (#31)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
		@ -1,32 +1,44 @@
 | 
			
		||||
"""
 | 
			
		||||
Top-level YOLO model interface. First principle usage example - https://github.com/ultralytics/ultralytics/issues/13
 | 
			
		||||
"""
 | 
			
		||||
import torch
 | 
			
		||||
import yaml
 | 
			
		||||
 | 
			
		||||
import ultralytics.yolo as yolo
 | 
			
		||||
from ultralytics.yolo.utils import LOGGER
 | 
			
		||||
from ultralytics.yolo.utils.checks import check_yaml
 | 
			
		||||
from ultralytics.yolo.utils.modeling import get_model
 | 
			
		||||
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
 | 
			
		||||
 | 
			
		||||
# map head: [model, trainer]
 | 
			
		||||
MODEL_MAP = {
 | 
			
		||||
    "Classify": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],
 | 
			
		||||
    "Detect": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],  # temp
 | 
			
		||||
    "Segment": []}
 | 
			
		||||
    "classify": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],
 | 
			
		||||
    "detect": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],  # temp
 | 
			
		||||
    "segment": []}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class YOLO:
 | 
			
		||||
 | 
			
		||||
    def __init__(self, version=8) -> None:
 | 
			
		||||
    def __init__(self, task=None, version=8) -> None:
 | 
			
		||||
        self.version = version
 | 
			
		||||
        self.ModelClass = None
 | 
			
		||||
        self.TrainerClass = None
 | 
			
		||||
        self.model = None
 | 
			
		||||
        self.trainer = None
 | 
			
		||||
        self.pretrained_weights = None
 | 
			
		||||
        if task:
 | 
			
		||||
            if task.lower() not in MODEL_MAP:
 | 
			
		||||
                raise Exception(f"Unsupported task {task}. The supported tasks are: \n {MODEL_MAP.keys()}")
 | 
			
		||||
            self.ModelClass, self.TrainerClass = MODEL_MAP[task]
 | 
			
		||||
            self.TrainerClass = eval(self.trainer.replace("VERSION", f"v{self.version}"))
 | 
			
		||||
 | 
			
		||||
    def new(self, cfg: str):
 | 
			
		||||
        cfg = check_yaml(cfg)  # check YAML
 | 
			
		||||
        self.model, self.trainer = self._get_model_and_trainer(cfg)
 | 
			
		||||
        if self.model:
 | 
			
		||||
            self.model = self.model(cfg)
 | 
			
		||||
        else:
 | 
			
		||||
            with open(cfg, encoding='ascii', errors='ignore') as f:
 | 
			
		||||
                cfg = yaml.safe_load(f)  # model dict
 | 
			
		||||
            self.ModelClass, self.TrainerClass = self._get_model_and_trainer(cfg["head"])
 | 
			
		||||
            self.model = self.ModelClass(cfg)  # initialize
 | 
			
		||||
 | 
			
		||||
    def load(self, weights, autodownload=True):
 | 
			
		||||
        if not isinstance(self.pretrained_weights, type(None)):
 | 
			
		||||
@ -36,28 +48,45 @@ class YOLO:
 | 
			
		||||
            self.model.load(weights)
 | 
			
		||||
            LOGGER.info("Checkpoint loaded successfully")
 | 
			
		||||
        else:
 | 
			
		||||
            # TODO: infer model and trainer
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
            self.model = get_model(weights)
 | 
			
		||||
            self.ModelClass, self.TrainerClass = self._guess_model_and_trainer(list(self.model.named_children()))
 | 
			
		||||
        self.pretrained_weights = weights
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
        pass
 | 
			
		||||
        for m in self.model.modules():
 | 
			
		||||
            if hasattr(m, 'reset_parameters'):
 | 
			
		||||
                m.reset_parameters()
 | 
			
		||||
        for p in self.model.parameters():
 | 
			
		||||
            p.requires_grad = True
 | 
			
		||||
 | 
			
		||||
    def train(self, **kwargs):
 | 
			
		||||
        if 'data' not in kwargs:
 | 
			
		||||
            raise Exception("data is required to train")
 | 
			
		||||
        if not self.model:
 | 
			
		||||
            raise Exception("model not initialized. Use .new() or .load()")
 | 
			
		||||
        kwargs["model"] = self.model
 | 
			
		||||
        trainer = self.trainer(overrides=kwargs)
 | 
			
		||||
        # kwargs["model"] = self.model
 | 
			
		||||
        trainer = self.TrainerClass(overrides=kwargs)
 | 
			
		||||
        trainer.model = self.model
 | 
			
		||||
        trainer.train()
 | 
			
		||||
 | 
			
		||||
    def _get_model_and_trainer(self, cfg):
 | 
			
		||||
        with open(cfg, encoding='ascii', errors='ignore') as f:
 | 
			
		||||
            cfg = yaml.safe_load(f)  # model dict
 | 
			
		||||
        model, trainer = MODEL_MAP[cfg["head"][-1][-2]]
 | 
			
		||||
    def _guess_model_and_trainer(self, cfg):
 | 
			
		||||
        # TODO: warn
 | 
			
		||||
        head = cfg[-1][-2]
 | 
			
		||||
        if head.lower() in ["classify", "classifier", "cls", "fc"]:
 | 
			
		||||
            task = "classify"
 | 
			
		||||
        if head.lower() in ["detect"]:
 | 
			
		||||
            task = "detect"
 | 
			
		||||
        if head.lower() in ["segment"]:
 | 
			
		||||
            task = "segment"
 | 
			
		||||
        model_class, trainer_class = MODEL_MAP[task]
 | 
			
		||||
        # warning: eval is unsafe. Use with caution
 | 
			
		||||
        trainer = eval(trainer.replace("VERSION", f"v{self.version}"))
 | 
			
		||||
        trainer_class = eval(trainer_class.replace("VERSION", f"v{self.version}"))
 | 
			
		||||
 | 
			
		||||
        return model(cfg), trainer
 | 
			
		||||
        return model_class, trainer_class
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    model = YOLO()
 | 
			
		||||
    # model.new("assets/dummy_model.yaml")
 | 
			
		||||
    model.load("yolov5n-cls.pt")
 | 
			
		||||
    model.train(data="imagenette160", epochs=1, lr0=0.01)
 | 
			
		||||
 | 
			
		||||
@ -22,6 +22,7 @@ import ultralytics.yolo.utils as utils
 | 
			
		||||
import ultralytics.yolo.utils.loggers as loggers
 | 
			
		||||
from ultralytics.yolo.utils import LOGGER, ROOT
 | 
			
		||||
from ultralytics.yolo.utils.files import increment_path, save_yaml
 | 
			
		||||
from ultralytics.yolo.utils.modeling import get_model
 | 
			
		||||
 | 
			
		||||
CONFIG_PATH_ABS = ROOT / "yolo/utils/configs"
 | 
			
		||||
DEFAULT_CONFIG = "defaults.yaml"
 | 
			
		||||
@ -33,6 +34,7 @@ class BaseTrainer:
 | 
			
		||||
        self.console = LOGGER
 | 
			
		||||
        self.args = self._get_config(config, overrides)
 | 
			
		||||
        self.validator = None
 | 
			
		||||
        self.model = None
 | 
			
		||||
        self.callbacks = defaultdict(list)
 | 
			
		||||
        self.console.info(f"Training config: \n args: \n {self.args}")  # to debug
 | 
			
		||||
        # Directories
 | 
			
		||||
@ -51,7 +53,8 @@ class BaseTrainer:
 | 
			
		||||
 | 
			
		||||
        # Model and Dataloaders.
 | 
			
		||||
        self.trainset, self.testset = self.get_dataset(self.args.data)
 | 
			
		||||
        self.model = self.get_model(self.args.model, self.args.pretrained).to(self.device)
 | 
			
		||||
        if self.args.model is not None:
 | 
			
		||||
            self.model = self.get_model(self.args.model, self.args.pretrained).to(self.device)
 | 
			
		||||
 | 
			
		||||
        # epoch level metrics
 | 
			
		||||
        self.metrics = {}  # handle metrics returned by validator
 | 
			
		||||
@ -225,11 +228,18 @@ class BaseTrainer:
 | 
			
		||||
        """
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    def get_model(self, model, pretrained=True):
 | 
			
		||||
    def get_model(self, model, pretrained):
 | 
			
		||||
        """
 | 
			
		||||
        load/create/download model for any task
 | 
			
		||||
        """
 | 
			
		||||
        pass
 | 
			
		||||
        model = get_model(model)
 | 
			
		||||
        for m in model.modules():
 | 
			
		||||
            if not pretrained and hasattr(m, 'reset_parameters'):
 | 
			
		||||
                m.reset_parameters()
 | 
			
		||||
        for p in model.parameters():
 | 
			
		||||
            p.requires_grad = True
 | 
			
		||||
 | 
			
		||||
        return model
 | 
			
		||||
 | 
			
		||||
    def get_validator(self):
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
@ -1,10 +1,10 @@
 | 
			
		||||
import contextlib
 | 
			
		||||
 | 
			
		||||
import torchvision
 | 
			
		||||
import yaml
 | 
			
		||||
 | 
			
		||||
from ultralytics.yolo.utils.downloads import attempt_download
 | 
			
		||||
 | 
			
		||||
from .modules import *
 | 
			
		||||
from ultralytics.yolo.utils.modeling.modules import *
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
 | 
			
		||||
@ -26,7 +26,7 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
 | 
			
		||||
    # Module compatibility updates
 | 
			
		||||
    for m in model.modules():
 | 
			
		||||
        t = type(m)
 | 
			
		||||
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
 | 
			
		||||
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect):
 | 
			
		||||
            m.inplace = inplace  # torch 1.7.0 compatibility
 | 
			
		||||
            if t is Detect and not isinstance(m.anchor_grid, list):
 | 
			
		||||
                delattr(m, 'anchor_grid')
 | 
			
		||||
@ -107,6 +107,20 @@ def parse_model(d, ch):  # model_dict, input_channels(3)
 | 
			
		||||
    return nn.Sequential(*layers), sorted(save)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_model(model: str):
 | 
			
		||||
    if model.endswith(".pt"):
 | 
			
		||||
        model = model.split(".")[0]
 | 
			
		||||
 | 
			
		||||
    if Path(model + ".pt").is_file():
 | 
			
		||||
        trained_model = torch.load(model + ".pt", map_location='cpu')
 | 
			
		||||
    elif model in torchvision.models.__dict__:  # try torch hub classifier models
 | 
			
		||||
        trained_model = torch.hub.load("pytorch/vision", model, pretrained=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model_ckpt = attempt_download(model + ".pt")  # try ultralytics assets
 | 
			
		||||
        trained_model = torch.load(model_ckpt, map_location='cpu')
 | 
			
		||||
    return trained_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def yaml_load(file='data.yaml'):
 | 
			
		||||
    # Single-line safe yaml loading
 | 
			
		||||
    with open(file, errors='ignore') as f:
 | 
			
		||||
 | 
			
		||||
@ -41,21 +41,6 @@ class ClassificationTrainer(BaseTrainer):
 | 
			
		||||
    def get_dataloader(self, dataset_path, batch_size=None, rank=0):
 | 
			
		||||
        return build_classification_dataloader(path=dataset_path, batch_size=self.args.batch_size, rank=rank)
 | 
			
		||||
 | 
			
		||||
    def get_model(self, model, pretrained):
 | 
			
		||||
        # temp. minimal. only supports torchvision models
 | 
			
		||||
        model = self.args.model
 | 
			
		||||
        if model in torchvision.models.__dict__:  # TorchVision models i.e. resnet50, efficientnet_b0
 | 
			
		||||
            model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
 | 
			
		||||
        else:
 | 
			
		||||
            raise ModuleNotFoundError(f'--model {model} not found.')
 | 
			
		||||
        for m in model.modules():
 | 
			
		||||
            if not pretrained and hasattr(m, 'reset_parameters'):
 | 
			
		||||
                m.reset_parameters()
 | 
			
		||||
        for p in model.parameters():
 | 
			
		||||
            p.requires_grad = True  # for training
 | 
			
		||||
 | 
			
		||||
        return model
 | 
			
		||||
 | 
			
		||||
    def get_validator(self):
 | 
			
		||||
        return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console)
 | 
			
		||||
 | 
			
		||||
@ -65,8 +50,8 @@ class ClassificationTrainer(BaseTrainer):
 | 
			
		||||
 | 
			
		||||
@hydra.main(version_base=None, config_path=CONFIG_PATH_ABS, config_name=str(DEFAULT_CONFIG).split(".")[0])
 | 
			
		||||
def train(cfg):
 | 
			
		||||
    cfg.model = cfg.model or "squeezenet1_0"
 | 
			
		||||
    cfg.data = cfg.data or "imagenette"  # or yolo.ClassificationDataset("mnist")
 | 
			
		||||
    cfg.model = cfg.model or "resnet18"
 | 
			
		||||
    cfg.data = cfg.data or "imagenette160"  # or yolo.ClassificationDataset("mnist")
 | 
			
		||||
    trainer = ClassificationTrainer(cfg)
 | 
			
		||||
    trainer.train()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user