[Docs]: Link buttons, add autobackend, BaseModel and ops (#130)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
@ -33,7 +33,7 @@ CLI requires no customization or code. You can simply run all tasks from the ter
|
||||
```bash
|
||||
yolo task=detect mode=train model=s.yaml device=\'0,1,2,3\'
|
||||
```
|
||||
[CLI Guide](#){ .md-button .md-button--primary}
|
||||
[CLI Guide](cli.md){ .md-button .md-button--primary}
|
||||
|
||||
## Python API
|
||||
Ultralytics YOLO comes with pythonic Model and Trainer interface.
|
||||
@ -42,10 +42,9 @@ Ultralytics YOLO comes with pythonic Model and Trainer interface.
|
||||
import ultralytics
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.new("s-seg.yaml") # automatically detects task type
|
||||
model.load("s-seg.pt") # load checkpoint
|
||||
model = YOLO("s-seg.yaml") # automatically detects task type
|
||||
model = YOLO("s-seg.pt") # load checkpoint
|
||||
model.train(data="coco128-segments", epochs=1, lr0=0.01, ...)
|
||||
model.train(data="coco128-segments", epochs=1, lr0=0.01, device="0,1,2,3") # DDP mode
|
||||
```
|
||||
[API Guide](#){ .md-button .md-button--primary}
|
||||
[API Guide](sdk.md){ .md-button .md-button--primary}
|
||||
|
15
docs/reference/nn.md
Normal file
15
docs/reference/nn.md
Normal file
@ -0,0 +1,15 @@
|
||||
# nn Module
|
||||
Ultralytics nn module contains 3 main components:
|
||||
|
||||
1. **AutoBackend**: A module that can run inference on all popular model formats
|
||||
2. **BaseModel**: `BaseModel` class defines the operations supported by tasks like Detection and Segmentation
|
||||
3. **modules**: Optimized and reusable neural network blocks built on PyTorch.
|
||||
|
||||
## AutoBackend
|
||||
:::ultralytics.nn.autobackend.AutoBackend
|
||||
|
||||
## BaseModel
|
||||
:::ultralytics.nn.tasks.BaseModel
|
||||
|
||||
## Modules
|
||||
TODO
|
162
docs/reference/ops.md
Normal file
162
docs/reference/ops.md
Normal file
@ -0,0 +1,162 @@
|
||||
This module contains optimized deep learning related operations used in the Ultralytics YOLO framework
|
||||
## Non-max suppression
|
||||
:::ultralytics.ops.non_max_suppression
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## Scale boxes
|
||||
:::ultralytics.ops.scale_boxes
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## Scale image
|
||||
:::ultralytics.ops.scale_image
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## clip boxes
|
||||
:::ultralytics.ops.clip_boxes
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
# Box Format Conversion
|
||||
## xyxy2xywh
|
||||
:::ultralytics.ops.xyxy2xywh
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## xywh2xyxy
|
||||
:::ultralytics.ops.xywh2xyxy
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## xywhn2xyxy
|
||||
:::ultralytics.ops.xywhn2xyxy
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## xyxy2xywhn
|
||||
:::ultralytics.ops.xyxy2xywhn
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## xyn2xy
|
||||
:::ultralytics.ops.xyn2xy
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## xywh2ltwh
|
||||
:::ultralytics.ops.xywh2ltwh
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## xyxy2ltwh
|
||||
:::ultralytics.ops.xyxy2ltwh
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## ltwh2xywh
|
||||
:::ultralytics.ops.ltwh2xywh
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## ltwh2xyxy
|
||||
:::ultralytics.ops.ltwh2xyxy
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## segment2box
|
||||
:::ultralytics.ops.segment2box
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
# Mask Operations
|
||||
## resample_segments
|
||||
:::ultralytics.ops.resample_segments
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## crop_mask
|
||||
:::ultralytics.ops.crop_mask
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## process_mask_upsample
|
||||
:::ultralytics.ops.process_mask_upsample
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## process_mask
|
||||
:::ultralytics.ops.process_mask
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## process_mask_native
|
||||
:::ultralytics.ops.process_mask_native
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## scale_segments
|
||||
:::ultralytics.ops.scale_segments
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## masks2segments
|
||||
:::ultralytics.ops.masks2segments
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
## clip_segments
|
||||
:::ultralytics.ops.clip_segments
|
||||
handler: python
|
||||
options:
|
||||
show_source: false
|
||||
show_root_toc_entry: false
|
||||
---
|
||||
|
||||
|
||||
|
||||
|
||||
|
15
docs/sdk.md
15
docs/sdk.md
@ -6,8 +6,7 @@ This is the simplest way of simply using yolo models in a python environment. It
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.new("n.yaml") # pass any model type
|
||||
model = YOLO("yolov8n.yaml")
|
||||
model(img_tensor) # Or model.forward(). inference.
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
```
|
||||
@ -16,10 +15,9 @@ This is the simplest way of simply using yolo models in a python environment. It
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.load("n.pt") # pass any model type
|
||||
model = YOLO("yolov8n.pt") # pass any model type
|
||||
model(...) # inference
|
||||
model.train(data="coco128.yaml", epochs=5)
|
||||
model.train(epochs=5)
|
||||
```
|
||||
|
||||
=== "Resume Training"
|
||||
@ -35,8 +33,7 @@ This is the simplest way of simply using yolo models in a python environment. It
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model.load("model.pt")
|
||||
model = YOLO("model.pt")
|
||||
model.predict(source="0") # accepts all formats - img/folder/vid.*(mp4/format). 0 for webcam
|
||||
model.predict(source="folder", view_img=True) # Display preds. Accepts all yolo predict arguments
|
||||
|
||||
@ -48,7 +45,7 @@ This is the simplest way of simply using yolo models in a python environment. It
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO()
|
||||
model = YOLO("model.pt")
|
||||
model.fuse()
|
||||
model.info(verbose=True) # Print model information
|
||||
model.export(format=) # TODO:
|
||||
@ -61,7 +58,7 @@ This is the simplest way of simply using yolo models in a python environment. It
|
||||
|
||||
To know more about using `YOLO` models, refer Model class refernce
|
||||
|
||||
[Model reference](#){ .md-button .md-button--primary}
|
||||
[Model reference](reference/model.md){ .md-button .md-button--primary}
|
||||
|
||||
---
|
||||
### Customizing Tasks with Trainers
|
||||
|
Reference in New Issue
Block a user