added changes to use grayscale images during training
This commit is contained in:
@ -3,6 +3,7 @@
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
ch: 1 # number of channels
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
|
@ -741,9 +741,15 @@ class Format:
|
||||
|
||||
def _format_img(self, img):
|
||||
"""Format the image for YOLOv5 from Numpy array to PyTorch tensor."""
|
||||
# if len(img.shape) < 3:
|
||||
# img = np.expand_dims(img, -1)
|
||||
# img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
|
||||
# img = torch.from_numpy(img)
|
||||
# return img
|
||||
|
||||
if len(img.shape) < 3:
|
||||
img = np.expand_dims(img, -1)
|
||||
img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
|
||||
img = img.reshape([1, *img.shape])
|
||||
img = np.ascontiguousarray(img)
|
||||
img = torch.from_numpy(img)
|
||||
return img
|
||||
|
||||
|
@ -148,7 +148,7 @@ class BaseDataset(Dataset):
|
||||
if fn.exists(): # load npy
|
||||
im = np.load(fn)
|
||||
else: # read image
|
||||
im = cv2.imread(f) # BGR
|
||||
im = cv2.imread(f, cv2.IMREAD_GRAYSCALE) # BGR
|
||||
if im is None:
|
||||
raise FileNotFoundError(f'Image Not Found {f}')
|
||||
h0, w0 = im.shape[:2] # orig hw
|
||||
|
Reference in New Issue
Block a user