|
|
|
@ -66,7 +66,7 @@ class BaseModel(nn.Module):
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def load(self, weights):
|
|
|
|
|
# Force all tasks implement this function
|
|
|
|
|
# Force all tasks to implement this function
|
|
|
|
|
raise NotImplementedError("This function needs to be implemented by derived classes!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -169,10 +169,10 @@ class DetectionModel(BaseModel):
|
|
|
|
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
|
|
|
|
|
def load(self, weights):
|
|
|
|
|
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
|
|
|
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
|
|
|
|
csd = weights['model'].float().state_dict() # checkpoint state_dict as FP32
|
|
|
|
|
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
|
|
|
|
|
self.load_state_dict(csd, strict=False) # load
|
|
|
|
|
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from {weights}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentationModel(DetectionModel):
|
|
|
|
@ -203,11 +203,33 @@ class ClassificationModel(BaseModel):
|
|
|
|
|
self.nc = nc
|
|
|
|
|
|
|
|
|
|
def _from_yaml(self, cfg):
|
|
|
|
|
# Create a YOLOv5 classification model from a *.yaml file
|
|
|
|
|
# TODO: Create a YOLOv5 classification model from a *.yaml file
|
|
|
|
|
self.model = None
|
|
|
|
|
|
|
|
|
|
def load(self, weights):
|
|
|
|
|
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
|
|
|
|
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
|
|
|
|
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
|
|
|
|
|
csd = model.float().state_dict()
|
|
|
|
|
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
|
|
|
|
|
self.load_state_dict(csd, strict=False) # load
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def reshape_outputs(model, nc):
|
|
|
|
|
# Update a TorchVision classification model to class count 'n' if required
|
|
|
|
|
from ultralytics.yolo.utils.modeling.modules import Classify
|
|
|
|
|
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
|
|
|
|
if isinstance(m, Classify): # YOLO Classify() head
|
|
|
|
|
if m.linear.out_features != nc:
|
|
|
|
|
m.linear = nn.Linear(m.linear.in_features, nc)
|
|
|
|
|
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
|
|
|
|
if m.out_features != nc:
|
|
|
|
|
setattr(model, name, nn.Linear(m.in_features, nc))
|
|
|
|
|
elif isinstance(m, nn.Sequential):
|
|
|
|
|
types = [type(x) for x in m]
|
|
|
|
|
if nn.Linear in types:
|
|
|
|
|
i = types.index(nn.Linear) # nn.Linear index
|
|
|
|
|
if m[i].out_features != nc:
|
|
|
|
|
m[i] = nn.Linear(m[i].in_features, nc)
|
|
|
|
|
elif nn.Conv2d in types:
|
|
|
|
|
i = types.index(nn.Conv2d) # nn.Conv2d index
|
|
|
|
|
if m[i].out_channels != nc:
|
|
|
|
|
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias)
|
|
|
|
|