update model initialization design, supports custom data/num_classes (#44)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2022-11-15 20:06:29 +05:30
committed by GitHub
parent 1f3aad86c1
commit 832ea56eb4
8 changed files with 67 additions and 44 deletions

View File

@ -1,26 +1,27 @@
import subprocess
import time
from pathlib import Path
import hydra
import torch
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils import colorstr
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, torch_distributed_zero_first
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel
# BaseTrainer python usage
class ClassificationTrainer(BaseTrainer):
def load_model(self, model_cfg, weights, data):
# TODO: why treat clf models as unique. We should have clf yamls?
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
model = weights
else:
model = ClassificationModel(model_cfg, weights, data["nc"])
ClassificationModel.reshape_outputs(model, data["nc"])
return model
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.img_size,
batch_size=self.args.batch_size,
batch_size=batch_size,
rank=rank)
def preprocess_batch(self, batch):

View File

@ -10,12 +10,11 @@ import torch.nn.functional as F
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.anchors import check_anchors
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, de_parallel, torch_distributed_zero_first
from ultralytics.yolo.utils.torch_utils import de_parallel
# BaseTrainer python usage
@ -45,8 +44,15 @@ class SegmentationTrainer(BaseTrainer):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def load_cfg(self, cfg):
return SegmentationModel(cfg, nc=80)
def load_model(self, model_cfg, weights, data):
model = SegmentationModel(model_cfg if model_cfg else weights["model"].yaml,
ch=3,
nc=data["nc"],
anchors=self.args.get("anchors"))
check_anchors(model, self.args.anchor_t, self.args.img_size)
if weights:
model.load(weights)
return model
def get_validator(self):
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
@ -232,7 +238,7 @@ class SegmentationTrainer(BaseTrainer):
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.cfg = v8.ROOT / "models/yolov5n-seg.yaml"
cfg.model = v8.ROOT / "models/yolov5n-seg.yaml"
cfg.data = cfg.data or "coco128-seg.yaml" # or yolo.ClassificationDataset("mnist")
trainer = SegmentationTrainer(cfg)
trainer.train()