update model initialization design, supports custom data/num_classes (#44)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2022-11-15 20:06:29 +05:30
committed by GitHub
parent 1f3aad86c1
commit 832ea56eb4
8 changed files with 67 additions and 44 deletions

View File

@ -3,8 +3,7 @@
# Train settings -------------------------------------------------------------------------------------------------------
model: null # i.e. yolov5s.pt
cfg: null # i.e. yolov5s.yaml
model: null # i.e. yolov5s.pt, yolo.yaml
data: null # i.e. coco128.yaml
epochs: 300
batch_size: 16
@ -70,6 +69,7 @@ mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
label_smoothing: 0.0
# anchors: 3
# Hydra configs --------------------------------------------------------------------------------------------------------
hydra:

View File

@ -140,8 +140,3 @@ def download(url, dir=Path.cwd(), unzip=True, delete=True, curl=False, threads=1
else:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
def get_model(model: str):
# check for local weights
pass

View File

@ -66,7 +66,7 @@ class BaseModel(nn.Module):
return self
def load(self, weights):
# Force all tasks implement this function
# Force all tasks to implement this function
raise NotImplementedError("This function needs to be implemented by derived classes!")
@ -169,10 +169,10 @@ class DetectionModel(BaseModel):
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
def load(self, weights):
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = weights['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from {weights}')
class SegmentationModel(DetectionModel):
@ -203,11 +203,33 @@ class ClassificationModel(BaseModel):
self.nc = nc
def _from_yaml(self, cfg):
# Create a YOLOv5 classification model from a *.yaml file
# TODO: Create a YOLOv5 classification model from a *.yaml file
self.model = None
def load(self, weights):
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
csd = model.float().state_dict()
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
@staticmethod
def reshape_outputs(model, nc):
# Update a TorchVision classification model to class count 'n' if required
from ultralytics.yolo.utils.modeling.modules import Classify
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
if isinstance(m, Classify): # YOLO Classify() head
if m.linear.out_features != nc:
m.linear = nn.Linear(m.linear.in_features, nc)
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
if m.out_features != nc:
setattr(model, name, nn.Linear(m.in_features, nc))
elif isinstance(m, nn.Sequential):
types = [type(x) for x in m]
if nn.Linear in types:
i = types.index(nn.Linear) # nn.Linear index
if m[i].out_features != nc:
m[i] = nn.Linear(m[i].in_features, nc)
elif nn.Conv2d in types:
i = types.index(nn.Conv2d) # nn.Conv2d index
if m[i].out_channels != nc:
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias)