Minor updates and improvements (#216)

Co-authored-by: Hardik Dava <39372750+hardikdava@users.noreply.github.com>
Co-authored-by: Onuralp Sezer <thunderbirdtr@fedoraproject.org>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 959c11b9bc
commit 7f9d7142c2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -84,17 +84,17 @@ jobs:
- name: Test detection
shell: bash # for Windows compatibility
run: |
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=1 imgsz=64
yolo task=detect mode=val model=runs/detect/train/weights/last.pt imgsz=64
yolo task=detect mode=predict model=runs/detect/train/weights/last.pt imgsz=64 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/detect/train/weights/last.pt imgsz=64 format=torchscript
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=1 imgsz=32
yolo task=detect mode=val model=runs/detect/train/weights/last.pt imgsz=32
yolo task=detect mode=predict model=runs/detect/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/detect/train/weights/last.pt imgsz=32 format=torchscript
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
yolo task=segment mode=train model=yolov8n-seg.yaml data=coco128-seg.yaml epochs=1 imgsz=64
yolo task=segment mode=val model=runs/segment/train/weights/last.pt data=coco128-seg.yaml imgsz=64
yolo task=segment mode=predict model=runs/segment/train/weights/last.pt imgsz=64 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/segment/train/weights/last.pt imgsz=64 format=torchscript
yolo task=segment mode=train model=yolov8n-seg.yaml data=coco128-seg.yaml epochs=1 imgsz=32
yolo task=segment mode=val model=runs/segment/train/weights/last.pt data=coco128-seg.yaml imgsz=32
yolo task=segment mode=predict model=runs/segment/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/segment/train/weights/last.pt imgsz=32 format=torchscript
- name: Test classification
shell: bash # for Windows compatibility
run: |

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
# Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
# Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:22.12-py3
@ -22,7 +22,7 @@ RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
# Install pip packages
RUN python -m pip install --upgrade pip wheel
RUN pip uninstall -y Pillow torchtext # torch torchvision
RUN pip uninstall -y Pillow torchtext torch torchvision
RUN pip install --no-cache ultralytics albumentations comet gsutil notebook Pillow>=9.1.0 \
'opencv-python<4.6.0.66' \
--extra-index-url https://download.pytorch.org/whl/cu113

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
# Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv8 deployments
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM ubuntu:20.04

@ -533,14 +533,14 @@
"from ultralytics import YOLO\n",
"\n",
"# Load a model\n",
"model = YOLO('yolov8n.yaml') # build a new model from scratch\n",
"model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)\n",
"model = YOLO('yolov8n.yaml') # build a new model from scratch\n",
"model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)\n",
"\n",
"# Model usage\n",
"results = model.train(data='coco128.yaml', epochs=3) # train the model\n",
"results = model.val(data='coco128.yaml') # evaluate model performance on the validation set\n",
"results = model.predict(source='https://ultralytics.com/images/bus.jpg') # predict on an image\n",
"success = YOLO('yolov8n.pt').export(format='onnx') # export a model to ONNX format"
"# Use the model\n",
"results = model.train(data='coco128.yaml', epochs=3) # train the model\n",
"results = model.val() # evaluate model performance on the validation set\n",
"results = model('https://ultralytics.com/images/bus.jpg') # predict on an image\n",
"success = YOLO('yolov8n.pt').export(format='onnx') # export a model to ONNX format"
],
"metadata": {
"id": "bpF9-vS_DAaf"

@ -378,7 +378,7 @@ class Exporter:
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
f = self.file.with_suffix('.mlmodel')
model = iOSModel(self.model, self.im) if self.args.nms else self.model
model = iOSModel(self.model, self.im).eval() if self.args.nms else self.model
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])])
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)

@ -43,7 +43,8 @@ class DetectionValidator(BaseValidator):
def init_metrics(self, model):
head = model.model[-1] if self.training else model.model.model[-1]
self.is_coco = self.data.get('val', '').endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
val = self.data.get('val', '') # validation path
self.is_coco = isinstance(val, str) and val.endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
self.nc = head.nc

Loading…
Cancel
Save