`ultralytics 8.0.83` Neptune AI logging addition (#2130)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Snyk bot <snyk-bot@snyk.io>
Co-authored-by: Toutatis64 <Toutatis64@users.noreply.github.com>
Co-authored-by: M. Tolga Cangöz <46008593+standardAI@users.noreply.github.com>
Co-authored-by: Talia Bender <85292283+taliabender@users.noreply.github.com>
Co-authored-by: Ophélie Le Mentec <17216799+ouphi@users.noreply.github.com>
Co-authored-by: Kadir Şahin <68073829+ssahinnkadir@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 55a03ad85f
commit 6c082ebd6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,7 +3,7 @@
# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM arm64v8/ubuntu:rolling
FROM arm64v8/ubuntu:22.10
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/

@ -3,7 +3,7 @@
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv8 deployments
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM ubuntu:rolling
FROM ubuntu:22.10
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/

@ -56,7 +56,7 @@ whether each source can be used in streaming mode with `stream=True` ✅ and an
## Arguments
`model.predict` accepts multiple arguments that control the predction operation. These arguments can be passed directly to `model.predict`:
`model.predict` accepts multiple arguments that control the prediction operation. These arguments can be passed directly to `model.predict`:
!!! example
```
model.predict(source, save=True, imgsz=320, conf=0.5)
@ -273,4 +273,4 @@ Here's a Python script using OpenCV (cv2) and YOLOv8 to run inference on video f
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
```

@ -3,11 +3,6 @@
:::ultralytics.hub.utils.Traces
<br><br>
# check_dataset_disk_space
---
:::ultralytics.hub.utils.check_dataset_disk_space
<br><br>
# request_with_credentials
---
:::ultralytics.hub.utils.request_with_credentials

@ -8,6 +8,11 @@
:::ultralytics.yolo.utils.downloads.unzip_file
<br><br>
# check_disk_space
---
:::ultralytics.yolo.utils.downloads.check_disk_space
<br><br>
# safe_download
---
:::ultralytics.yolo.utils.downloads.safe_download

@ -46,7 +46,7 @@ setup(
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU Affero General Public License v3 (AGPLv3)',
'License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.82'
__version__ = '8.0.83'
from ultralytics.hub import start
from ultralytics.yolo.engine.model import YOLO

@ -3,6 +3,7 @@
import glob
import math
import os
import random
from copy import deepcopy
from multiprocessing.pool import ThreadPool
from pathlib import Path
@ -10,10 +11,11 @@ from typing import Optional
import cv2
import numpy as np
import psutil
from torch.utils.data import Dataset
from tqdm import tqdm
from ..utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT
from ..utils import LOCAL_RANK, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT
from .utils import HELP_URL, IMG_FORMATS
@ -63,14 +65,10 @@ class BaseDataset(Dataset):
self.augment = augment
self.single_cls = single_cls
self.prefix = prefix
self.im_files = self.get_img_files(self.img_path)
self.labels = self.get_labels()
self.update_labels(include_class=classes) # single_cls and include_class
self.ni = len(self.labels)
# Rect stuff
self.ni = len(self.labels) # number of images
self.rect = rect
self.batch_size = batch_size
self.stride = stride
@ -80,6 +78,8 @@ class BaseDataset(Dataset):
self.set_rectangle()
# Cache stuff
if cache == 'ram' and not self.check_cache_ram():
cache = False
self.ims = [None] * self.ni
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
if cache:
@ -148,7 +148,7 @@ class BaseDataset(Dataset):
def cache_images(self, cache):
"""Cache images to memory or disk."""
gb = 0 # Gigabytes of cached images
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni
fcn = self.cache_images_to_disk if cache == 'disk' else self.load_image
with ThreadPool(NUM_THREADS) as pool:
@ -156,11 +156,11 @@ class BaseDataset(Dataset):
pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
for i, x in pbar:
if cache == 'disk':
gb += self.npy_files[i].stat().st_size
b += self.npy_files[i].stat().st_size
else: # 'ram'
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
gb += self.ims[i].nbytes
pbar.desc = f'{self.prefix}Caching images ({gb / 1E9:.1f}GB {cache})'
b += self.ims[i].nbytes
pbar.desc = f'{self.prefix}Caching images ({b / gb:.1f}GB {cache})'
pbar.close()
def cache_images_to_disk(self, i):
@ -169,6 +169,24 @@ class BaseDataset(Dataset):
if not f.exists():
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
def check_cache_ram(self, safety_margin=0.5):
"""Check image caching requirements vs available memory."""
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
n = min(self.ni, 30) # extrapolate from 30 random images
for _ in range(n):
im = cv2.imread(random.choice(self.im_files)) # sample image
ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
b += im.nbytes * ratio ** 2
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
mem = psutil.virtual_memory()
cache = mem_required < mem.available # to cache or not to cache, that is the question
if not cache:
LOGGER.info(f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
f'with {int(safety_margin * 100)}% safety margin but only '
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
return cache
def set_rectangle(self):
"""Sets the shape of bounding boxes for YOLO detections as rectangles."""
bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index

@ -469,31 +469,27 @@ class YOLO:
@property
def names(self):
"""
Returns class names of the loaded model.
"""
"""Returns class names of the loaded model."""
return self.model.names if hasattr(self.model, 'names') else None
@property
def device(self):
"""
Returns device if PyTorch model
"""
"""Returns device if PyTorch model."""
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
@property
def transforms(self):
"""
Returns transform of the loaded model.
"""
"""Returns transform of the loaded model."""
return self.model.transforms if hasattr(self.model, 'transforms') else None
def add_callback(self, event: str, func):
"""
Add callback
"""
"""Add a callback."""
self.callbacks[event].append(func)
def clear_callback(self, event: str):
"""Clear all event callbacks."""
self.callbacks[event] = []
@staticmethod
def _reset_ckpt_args(args):
"""Reset arguments when loading a PyTorch model."""

@ -734,3 +734,26 @@ ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter'
'Docker' if is_docker() else platform.system()
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
set_sentry()
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------------
imshow_ = cv2.imshow # copy to avoid recursion errors
def imread(filename, flags=cv2.IMREAD_COLOR):
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
def imwrite(filename, img):
try:
cv2.imencode(Path(filename).suffix, img)[1].tofile(filename)
return True
except Exception:
return False
def imshow(path, im):
imshow_(path.encode('unicode_escape').decode(), im)
if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename:
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine

@ -200,11 +200,12 @@ def add_integration_callbacks(instance):
from .comet import callbacks as comet_callbacks
from .hub import callbacks as hub_callbacks
from .mlflow import callbacks as mf_callbacks
from .neptune import callbacks as neptune_callbacks
from .raytune import callbacks as tune_callbacks
from .tensorboard import callbacks as tb_callbacks
from .wb import callbacks as wb_callbacks
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks, mf_callbacks, tune_callbacks, wb_callbacks:
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks, mf_callbacks, tune_callbacks, wb_callbacks, neptune_callbacks:
for k, v in x.items():
if v not in instance.callbacks[k]: # prevent duplicate callbacks addition
instance.callbacks[k].append(v) # callback[name].append(func)

@ -52,19 +52,12 @@ def on_fit_epoch_end(trainer):
run.log_metrics(metrics=metrics_dict, step=trainer.epoch)
def on_model_save(trainer):
"""Logs model and metrics to mlflow on save."""
if mlflow:
run.log_artifact(trainer.last)
def on_train_end(trainer):
"""Called at end of train loop to log model artifact info."""
if mlflow:
root_dir = Path(__file__).resolve().parents[3]
run.log_artifact(trainer.last)
run.log_artifact(trainer.best)
model_uri = f'runs:/{run_id}/'
run.register_model(model_uri, experiment_name)
run.pyfunc.log_model(artifact_path=experiment_name,
code_path=[str(root_dir)],
artifacts={'model_path': str(trainer.save_dir)},
@ -74,5 +67,4 @@ def on_train_end(trainer):
callbacks = {
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_model_save': on_model_save,
'on_train_end': on_train_end} if mlflow else {}

@ -0,0 +1,105 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
try:
import neptune
from neptune.types import File
assert not TESTS_RUNNING # do not log pytest
assert hasattr(neptune, '__version__')
except (ImportError, AssertionError):
neptune = None
run = None # NeptuneAI experiment logger instance
def _log_scalars(scalars, step=0):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in scalars.items():
run[k].append(value=v, step=step)
def _log_images(imgs_dict, group=''):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in imgs_dict.items():
run[f'{group}/{k}'].upload(File(v))
def _log_plot(title, plot_path):
"""Log plots to the NeptuneAI experiment logger."""
"""
Log image as plot in the plot section of NeptuneAI
arguments:
title (str) Title of the plot
plot_path (PosixPath or str) Path to the saved image file
"""
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
ax.imshow(img)
run[f'Plots/{title}'].upload(fig)
def on_pretrain_routine_start(trainer):
"""Callback function called before the training routine starts."""
try:
global run
run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8'])
run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()}
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}')
def on_train_epoch_end(trainer):
"""Callback function called at end of each training epoch."""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
_log_scalars(trainer.lr, trainer.epoch + 1)
if trainer.epoch == 1:
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic')
def on_fit_epoch_end(trainer):
"""Callback function called at end of each fit (train+val) epoch."""
if run and trainer.epoch == 0:
model_info = {
'parameters': get_num_params(trainer.model),
'GFLOPs': round(get_flops(trainer.model), 3),
'speed(ms)': round(trainer.validator.speed['inference'], 3)}
run['Configuration/Model'] = model_info
_log_scalars(trainer.metrics, trainer.epoch + 1)
def on_val_end(validator):
"""Callback function called at end of each validation."""
if run:
# Log val_labels and val_pred
_log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation')
def on_train_end(trainer):
"""Callback function called at end of training."""
if run:
# Log final results, CM matrix + PR plots
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Log the final model
run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str(
trainer.best)))
run.stop()
callbacks = {
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_val_end': on_val_end,
'on_train_end': on_train_end} if neptune else {}
Loading…
Cancel
Save