`ultralytics 8.0.110` new `profile` and `fraction` train args (#2880)

single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 75012e575e
commit 6bf5000a88
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -4,6 +4,7 @@
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
RUN pip install --no-cache nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
@ -29,7 +30,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . albumentations comet tensorboard thop pycocotools
RUN pip install --no-cache -e . albumentations comet thop pycocotools onnx onnx-simplifier onnxruntime-gpu
# Set environment variables
ENV OMP_NUM_THREADS=1

@ -7,6 +7,11 @@ description: Explore convolutional neural network modules & techniques such as L
:::ultralytics.nn.modules.conv.Conv
<br><br>
# Conv2
---
:::ultralytics.nn.modules.conv.Conv2
<br><br>
# LightConv
---
:::ultralytics.nn.modules.conv.LightConv

@ -87,6 +87,11 @@ description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp,
:::ultralytics.yolo.data.augment.classify_transforms
<br><br>
# hsv2colorjitter
---
:::ultralytics.yolo.data.augment.hsv2colorjitter
<br><br>
# classify_albumentations
---
:::ultralytics.yolo.data.augment.classify_albumentations

@ -2,6 +2,11 @@
description: Improve your YOLO's performance and measure its speed. Benchmark utility for YOLOv5.
---
# ProfileModels
---
:::ultralytics.yolo.utils.benchmarks.ProfileModels
<br><br>
# benchmark
---
:::ultralytics.yolo.utils.benchmarks.benchmark

@ -57,11 +57,21 @@ description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils fu
:::ultralytics.yolo.utils.torch_utils.get_num_gradients
<br><br>
# model_info_for_loggers
---
:::ultralytics.yolo.utils.torch_utils.model_info_for_loggers
<br><br>
# get_flops
---
:::ultralytics.yolo.utils.torch_utils.get_flops
<br><br>
# get_flops_with_torch_profiler
---
:::ultralytics.yolo.utils.torch_utils.get_flops_with_torch_profiler
<br><br>
# initialize_weights
---
:::ultralytics.yolo.utils.torch_utils.initialize_weights

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.109'
__version__ = '8.0.110'
from ultralytics.hub import start
from ultralytics.vit.rtdetr import RTDETR

@ -778,11 +778,8 @@ def v8_transforms(dataset, imgsz, hyp):
if flip_idx is None and hyp.fliplr > 0.0:
hyp.fliplr = 0.0
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
elif flip_idx:
if len(flip_idx) != kpt_shape[0]:
raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}')
elif flip_idx[0] != 0:
raise ValueError(f'data.yaml flip_idx={flip_idx} must be zero-index (start from 0)')
elif flip_idx and (len(flip_idx) != kpt_shape[0]):
raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}')
return Compose([
pre_transform,

Loading…
Cancel
Save