Update YOLOv8-ONNXRuntime-CPP (#3455)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>single_channel
parent
1c4a363497
commit
69a2d70a78
@ -0,0 +1,54 @@
|
|||||||
|
# YOLOv8 OnnxRuntime C++
|
||||||
|
|
||||||
|
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
|
||||||
|
|
||||||
|
We recommend using Visual Studio to build the project.
|
||||||
|
|
||||||
|
## Benefits
|
||||||
|
|
||||||
|
- Friendly for deployment in the industrial sector.
|
||||||
|
- Faster than OpenCV's DNN inference on both CPU and GPU.
|
||||||
|
- Supports CUDA acceleration.
|
||||||
|
- Easy to add FP16 inference (using template functions).
|
||||||
|
|
||||||
|
## Exporting YOLOv8 Models
|
||||||
|
|
||||||
|
To export YOLOv8 models, use the following Python script:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# Load a YOLOv8 model
|
||||||
|
model = YOLO("yolov8n.pt")
|
||||||
|
|
||||||
|
# Export the model
|
||||||
|
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
|
||||||
|
| Dependency | Version |
|
||||||
|
| ----------------------- | -------- |
|
||||||
|
| Onnxruntime-win-x64-gpu | >=1.14.1 |
|
||||||
|
| OpenCV | >=4.0.0 |
|
||||||
|
| C++ | >=17 |
|
||||||
|
|
||||||
|
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
```c++
|
||||||
|
// CPU inference
|
||||||
|
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, false};
|
||||||
|
// GPU inference
|
||||||
|
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, true};
|
||||||
|
|
||||||
|
// Load your image
|
||||||
|
cv::Mat img = cv::imread(img_path);
|
||||||
|
|
||||||
|
char* ret = p1->CreateSession(params);
|
||||||
|
|
||||||
|
ret = p->RunSession(img, res);
|
||||||
|
```
|
||||||
|
|
||||||
|
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.
|
@ -0,0 +1,271 @@
|
|||||||
|
#include "inference.h"
|
||||||
|
#include <regex>
|
||||||
|
|
||||||
|
#define benchmark
|
||||||
|
#define ELOG
|
||||||
|
|
||||||
|
DCSP_CORE::DCSP_CORE()
|
||||||
|
{
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
DCSP_CORE::~DCSP_CORE()
|
||||||
|
{
|
||||||
|
delete session;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
char* BlobFromImage(cv::Mat& iImg, T& iBlob)
|
||||||
|
{
|
||||||
|
int channels = iImg.channels();
|
||||||
|
int imgHeight = iImg.rows;
|
||||||
|
int imgWidth = iImg.cols;
|
||||||
|
|
||||||
|
for (int c = 0; c < channels; c++)
|
||||||
|
{
|
||||||
|
for (int h = 0; h < imgHeight; h++)
|
||||||
|
{
|
||||||
|
for (int w = 0; w < imgWidth; w++)
|
||||||
|
{
|
||||||
|
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = (std::remove_pointer<T>::type)((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
|
||||||
|
{
|
||||||
|
cv::Mat img = iImg.clone();
|
||||||
|
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
|
||||||
|
if (img.channels() == 1)
|
||||||
|
{
|
||||||
|
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
|
||||||
|
}
|
||||||
|
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
|
||||||
|
{
|
||||||
|
char* Ret = RET_OK;
|
||||||
|
std::regex pattern("[\u4e00-\u9fa5]");
|
||||||
|
bool result = std::regex_search(iParams.ModelPath, pattern);
|
||||||
|
if (result)
|
||||||
|
{
|
||||||
|
Ret = "[DCSP_ONNX]:model path error.change your model path without chinese characters.";
|
||||||
|
std::cout << Ret << std::endl;
|
||||||
|
return Ret;
|
||||||
|
}
|
||||||
|
try
|
||||||
|
{
|
||||||
|
rectConfidenceThreshold = iParams.RectConfidenceThreshold;
|
||||||
|
iouThreshold = iParams.iouThreshold;
|
||||||
|
imgSize = iParams.imgSize;
|
||||||
|
modelType = iParams.ModelType;
|
||||||
|
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
|
||||||
|
Ort::SessionOptions sessionOption;
|
||||||
|
if (iParams.CudaEnable)
|
||||||
|
{
|
||||||
|
cudaEnable = iParams.CudaEnable;
|
||||||
|
OrtCUDAProviderOptions cudaOption;
|
||||||
|
cudaOption.device_id = 0;
|
||||||
|
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
|
||||||
|
//OrtOpenVINOProviderOptions ovOption;
|
||||||
|
//sessionOption.AppendExecutionProvider_OpenVINO(ovOption);
|
||||||
|
}
|
||||||
|
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
||||||
|
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
|
||||||
|
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
|
||||||
|
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
|
||||||
|
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
|
||||||
|
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
|
||||||
|
wide_cstr[ModelPathSize] = L'\0';
|
||||||
|
const wchar_t* modelPath = wide_cstr;
|
||||||
|
session = new Ort::Session(env, modelPath, sessionOption);
|
||||||
|
Ort::AllocatorWithDefaultOptions allocator;
|
||||||
|
size_t inputNodesNum = session->GetInputCount();
|
||||||
|
for (size_t i = 0; i < inputNodesNum; i++)
|
||||||
|
{
|
||||||
|
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
|
||||||
|
char* temp_buf = new char[50];
|
||||||
|
strcpy(temp_buf, input_node_name.get());
|
||||||
|
inputNodeNames.push_back(temp_buf);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t OutputNodesNum = session->GetOutputCount();
|
||||||
|
for (size_t i = 0; i < OutputNodesNum; i++)
|
||||||
|
{
|
||||||
|
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
|
||||||
|
char* temp_buf = new char[10];
|
||||||
|
strcpy(temp_buf, output_node_name.get());
|
||||||
|
outputNodeNames.push_back(temp_buf);
|
||||||
|
}
|
||||||
|
options = Ort::RunOptions{ nullptr };
|
||||||
|
WarmUpSession();
|
||||||
|
//std::cout << OrtGetApiBase()->GetVersionString() << std::endl;;
|
||||||
|
Ret = RET_OK;
|
||||||
|
return Ret;
|
||||||
|
}
|
||||||
|
catch (const std::exception& e)
|
||||||
|
{
|
||||||
|
const char* str1 = "[DCSP_ONNX]:";
|
||||||
|
const char* str2 = e.what();
|
||||||
|
std::string result = std::string(str1) + std::string(str2);
|
||||||
|
char* merged = new char[result.length() + 1];
|
||||||
|
std::strcpy(merged, result.c_str());
|
||||||
|
std::cout << merged << std::endl;
|
||||||
|
delete[] merged;
|
||||||
|
//return merged;
|
||||||
|
return "[DCSP_ONNX]:Create session failed.";
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
|
||||||
|
{
|
||||||
|
#ifdef benchmark
|
||||||
|
clock_t starttime_1 = clock();
|
||||||
|
#endif // benchmark
|
||||||
|
|
||||||
|
char* Ret = RET_OK;
|
||||||
|
cv::Mat processedImg;
|
||||||
|
PostProcess(iImg, imgSize, processedImg);
|
||||||
|
if (modelType < 4)
|
||||||
|
{
|
||||||
|
float* blob = new float[processedImg.total() * 3];
|
||||||
|
BlobFromImage(processedImg, blob);
|
||||||
|
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
|
||||||
|
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
|
||||||
|
}
|
||||||
|
|
||||||
|
return Ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename N>
|
||||||
|
char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult)
|
||||||
|
{
|
||||||
|
Ort::Value inputTensor = Ort::Value::CreateTensor<std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
|
||||||
|
#ifdef benchmark
|
||||||
|
clock_t starttime_2 = clock();
|
||||||
|
#endif // benchmark
|
||||||
|
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size());
|
||||||
|
#ifdef benchmark
|
||||||
|
clock_t starttime_3 = clock();
|
||||||
|
#endif // benchmark
|
||||||
|
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
|
||||||
|
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
|
||||||
|
std::vector<int64_t>outputNodeDims = tensor_info.GetShape();
|
||||||
|
std::remove_pointer<N>::type* output = outputTensor.front().GetTensorMutableData<std::remove_pointer<N>::type>();
|
||||||
|
delete blob;
|
||||||
|
switch (modelType)
|
||||||
|
{
|
||||||
|
case 1:
|
||||||
|
{
|
||||||
|
int strideNum = outputNodeDims[2];
|
||||||
|
int signalResultNum = outputNodeDims[1];
|
||||||
|
std::vector<int> class_ids;
|
||||||
|
std::vector<float> confidences;
|
||||||
|
std::vector<cv::Rect> boxes;
|
||||||
|
cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
|
||||||
|
rowData = rowData.t();
|
||||||
|
|
||||||
|
float* data = (float*)rowData.data;
|
||||||
|
|
||||||
|
float x_factor = iImg.cols / 640.;
|
||||||
|
float y_factor = iImg.rows / 640.;
|
||||||
|
for (int i = 0; i < strideNum; ++i)
|
||||||
|
{
|
||||||
|
float* classesScores = data + 4;
|
||||||
|
cv::Mat scores(1, classesNum, CV_32FC1, classesScores);
|
||||||
|
cv::Point class_id;
|
||||||
|
double maxClassScore;
|
||||||
|
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
|
||||||
|
if (maxClassScore > rectConfidenceThreshold)
|
||||||
|
{
|
||||||
|
confidences.push_back(maxClassScore);
|
||||||
|
class_ids.push_back(class_id.x);
|
||||||
|
|
||||||
|
float x = data[0];
|
||||||
|
float y = data[1];
|
||||||
|
float w = data[2];
|
||||||
|
float h = data[3];
|
||||||
|
|
||||||
|
int left = int((x - 0.5 * w) * x_factor);
|
||||||
|
int top = int((y - 0.5 * h) * y_factor);
|
||||||
|
|
||||||
|
int width = int(w * x_factor);
|
||||||
|
int height = int(h * y_factor);
|
||||||
|
|
||||||
|
boxes.push_back(cv::Rect(left, top, width, height));
|
||||||
|
}
|
||||||
|
data += signalResultNum;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int> nmsResult;
|
||||||
|
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
|
||||||
|
for (int i = 0; i < nmsResult.size(); ++i)
|
||||||
|
{
|
||||||
|
int idx = nmsResult[i];
|
||||||
|
DCSP_RESULT result;
|
||||||
|
result.classId = class_ids[idx];
|
||||||
|
result.confidence = confidences[idx];
|
||||||
|
result.box = boxes[idx];
|
||||||
|
oResult.push_back(result);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef benchmark
|
||||||
|
clock_t starttime_4 = clock();
|
||||||
|
double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
||||||
|
double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
|
||||||
|
double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
|
||||||
|
if (cudaEnable)
|
||||||
|
{
|
||||||
|
std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
|
||||||
|
}
|
||||||
|
#endif // benchmark
|
||||||
|
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
char* Ret = RET_OK;
|
||||||
|
return Ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
char* DCSP_CORE::WarmUpSession()
|
||||||
|
{
|
||||||
|
clock_t starttime_1 = clock();
|
||||||
|
char* Ret = RET_OK;
|
||||||
|
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
|
||||||
|
cv::Mat processedImg;
|
||||||
|
PostProcess(iImg, imgSize, processedImg);
|
||||||
|
if (modelType < 4)
|
||||||
|
{
|
||||||
|
float* blob = new float[iImg.total() * 3];
|
||||||
|
BlobFromImage(processedImg, blob);
|
||||||
|
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
|
||||||
|
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
|
||||||
|
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
|
||||||
|
delete[] blob;
|
||||||
|
clock_t starttime_4 = clock();
|
||||||
|
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
|
||||||
|
if (cudaEnable)
|
||||||
|
{
|
||||||
|
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return Ret;
|
||||||
|
}
|
@ -0,0 +1,83 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#define _CRT_SECURE_NO_WARNINGS
|
||||||
|
#define RET_OK nullptr
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include "io.h"
|
||||||
|
#include "direct.h"
|
||||||
|
#include "opencv.hpp"
|
||||||
|
#include <Windows.h>
|
||||||
|
#include "onnxruntime_cxx_api.h"
|
||||||
|
|
||||||
|
|
||||||
|
enum MODEL_TYPE
|
||||||
|
{
|
||||||
|
//FLOAT32 MODEL
|
||||||
|
YOLO_ORIGIN_V5 = 0,
|
||||||
|
YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
|
||||||
|
YOLO_POSE_V8 = 2,
|
||||||
|
YOLO_CLS_V8 = 3
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
typedef struct _DCSP_INIT_PARAM
|
||||||
|
{
|
||||||
|
std::string ModelPath;
|
||||||
|
MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
|
||||||
|
std::vector<int> imgSize={640, 640};
|
||||||
|
|
||||||
|
int classesNum=80;
|
||||||
|
float RectConfidenceThreshold = 0.6;
|
||||||
|
float iouThreshold = 0.5;
|
||||||
|
bool CudaEnable = false;
|
||||||
|
int LogSeverityLevel = 3;
|
||||||
|
int IntraOpNumThreads = 1;
|
||||||
|
}DCSP_INIT_PARAM;
|
||||||
|
|
||||||
|
|
||||||
|
typedef struct _DCSP_RESULT
|
||||||
|
{
|
||||||
|
int classId;
|
||||||
|
float confidence;
|
||||||
|
cv::Rect box;
|
||||||
|
}DCSP_RESULT;
|
||||||
|
|
||||||
|
|
||||||
|
class DCSP_CORE
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
DCSP_CORE();
|
||||||
|
~DCSP_CORE();
|
||||||
|
|
||||||
|
public:
|
||||||
|
char* CreateSession(DCSP_INIT_PARAM &iParams);
|
||||||
|
|
||||||
|
|
||||||
|
char* RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult);
|
||||||
|
|
||||||
|
|
||||||
|
char* WarmUpSession();
|
||||||
|
|
||||||
|
|
||||||
|
template<typename N>
|
||||||
|
char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult);
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
Ort::Env env;
|
||||||
|
Ort::Session* session;
|
||||||
|
bool cudaEnable;
|
||||||
|
Ort::RunOptions options;
|
||||||
|
std::vector<const char*> inputNodeNames;
|
||||||
|
std::vector<const char*> outputNodeNames;
|
||||||
|
|
||||||
|
|
||||||
|
int classesNum;
|
||||||
|
MODEL_TYPE modelType;
|
||||||
|
std::vector<int> imgSize;
|
||||||
|
float rectConfidenceThreshold;
|
||||||
|
float iouThreshold;
|
||||||
|
};
|
@ -0,0 +1,44 @@
|
|||||||
|
#include <iostream>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include "inference.h"
|
||||||
|
#include <filesystem>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
void file_iterator(DCSP_CORE*& p)
|
||||||
|
{
|
||||||
|
std::filesystem::path img_path = R"(E:\project\Project_C++\DCPS_ONNX\TEST_ORIGIN)";
|
||||||
|
int k = 0;
|
||||||
|
for (auto& i : std::filesystem::directory_iterator(img_path))
|
||||||
|
{
|
||||||
|
if (i.path().extension() == ".jpg")
|
||||||
|
{
|
||||||
|
std::string img_path = i.path().string();
|
||||||
|
//std::cout << img_path << std::endl;
|
||||||
|
cv::Mat img = cv::imread(img_path);
|
||||||
|
std::vector<DCSP_RESULT> res;
|
||||||
|
char* ret = p->RunSession(img, res);
|
||||||
|
for (int i = 0; i < res.size(); i++)
|
||||||
|
{
|
||||||
|
cv::rectangle(img, res.at(i).box, cv::Scalar(125, 123, 0), 3);
|
||||||
|
}
|
||||||
|
|
||||||
|
k++;
|
||||||
|
cv::imshow("TEST_ORIGIN", img);
|
||||||
|
cv::waitKey(0);
|
||||||
|
cv::destroyAllWindows();
|
||||||
|
//cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
DCSP_CORE* p1 = new DCSP_CORE;
|
||||||
|
std::string model_path = "yolov8n.onnx";
|
||||||
|
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 80, 0.1, 0.5, false };
|
||||||
|
char* ret = p1->CreateSession(params);
|
||||||
|
file_iterator(p1);
|
||||||
|
}
|
Loading…
Reference in new issue