Update YOLOv8-ONNXRuntime-CPP (#3455)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
DennisJ 2 years ago committed by GitHub
parent 1c4a363497
commit 69a2d70a78
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -12,6 +12,7 @@ This repository features a collection of real-world applications and walkthrough
| [YOLO .Net ONNX Detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
| [YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream)](https://wiki.seeedstudio.com/YOLOv8-DeepStream-TRT-Jetson/) | Python | [Lakshantha](https://github.com/lakshanthad) |
| [YOLOv8 ONNXRuntime Python](./YOLOv8-ONNXRuntime) | Python/ONNXRuntime | [Semih Demirel](https://github.com/semihhdemirel) |
| [YOLOv8-ONNXRuntime-CPP](./YOLOv8-ONNXRuntime-CPP) | C++/ONNXRuntime | [DennisJcy](https://github.com/DennisJcy) |
### How to Contribute

@ -0,0 +1,54 @@
# YOLOv8 OnnxRuntime C++
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
We recommend using Visual Studio to build the project.
## Benefits
- Friendly for deployment in the industrial sector.
- Faster than OpenCV's DNN inference on both CPU and GPU.
- Supports CUDA acceleration.
- Easy to add FP16 inference (using template functions).
## Exporting YOLOv8 Models
To export YOLOv8 models, use the following Python script:
```python
from ultralytics import YOLO
# Load a YOLOv8 model
model = YOLO("yolov8n.pt")
# Export the model
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
```
## Dependencies
| Dependency | Version |
| ----------------------- | -------- |
| Onnxruntime-win-x64-gpu | >=1.14.1 |
| OpenCV | >=4.0.0 |
| C++ | >=17 |
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
## Usage
```c++
// CPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, false};
// GPU inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, true};
// Load your image
cv::Mat img = cv::imread(img_path);
char* ret = p1->CreateSession(params);
ret = p->RunSession(img, res);
```
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.

@ -0,0 +1,271 @@
#include "inference.h"
#include <regex>
#define benchmark
#define ELOG
DCSP_CORE::DCSP_CORE()
{
}
DCSP_CORE::~DCSP_CORE()
{
delete session;
}
template<typename T>
char* BlobFromImage(cv::Mat& iImg, T& iBlob)
{
int channels = iImg.channels();
int imgHeight = iImg.rows;
int imgWidth = iImg.cols;
for (int c = 0; c < channels; c++)
{
for (int h = 0; h < imgHeight; h++)
{
for (int w = 0; w < imgWidth; w++)
{
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = (std::remove_pointer<T>::type)((iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
}
}
}
return RET_OK;
}
char* PostProcess(cv::Mat& iImg, std::vector<int> iImgSize, cv::Mat& oImg)
{
cv::Mat img = iImg.clone();
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
if (img.channels() == 1)
{
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
}
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
return RET_OK;
}
char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams)
{
char* Ret = RET_OK;
std::regex pattern("[\u4e00-\u9fa5]");
bool result = std::regex_search(iParams.ModelPath, pattern);
if (result)
{
Ret = "[DCSP_ONNX]:model path error.change your model path without chinese characters.";
std::cout << Ret << std::endl;
return Ret;
}
try
{
rectConfidenceThreshold = iParams.RectConfidenceThreshold;
iouThreshold = iParams.iouThreshold;
imgSize = iParams.imgSize;
modelType = iParams.ModelType;
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
Ort::SessionOptions sessionOption;
if (iParams.CudaEnable)
{
cudaEnable = iParams.CudaEnable;
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = 0;
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
//OrtOpenVINOProviderOptions ovOption;
//sessionOption.AppendExecutionProvider_OpenVINO(ovOption);
}
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
wide_cstr[ModelPathSize] = L'\0';
const wchar_t* modelPath = wide_cstr;
session = new Ort::Session(env, modelPath, sessionOption);
Ort::AllocatorWithDefaultOptions allocator;
size_t inputNodesNum = session->GetInputCount();
for (size_t i = 0; i < inputNodesNum; i++)
{
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
char* temp_buf = new char[50];
strcpy(temp_buf, input_node_name.get());
inputNodeNames.push_back(temp_buf);
}
size_t OutputNodesNum = session->GetOutputCount();
for (size_t i = 0; i < OutputNodesNum; i++)
{
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
char* temp_buf = new char[10];
strcpy(temp_buf, output_node_name.get());
outputNodeNames.push_back(temp_buf);
}
options = Ort::RunOptions{ nullptr };
WarmUpSession();
//std::cout << OrtGetApiBase()->GetVersionString() << std::endl;;
Ret = RET_OK;
return Ret;
}
catch (const std::exception& e)
{
const char* str1 = "[DCSP_ONNX]:";
const char* str2 = e.what();
std::string result = std::string(str1) + std::string(str2);
char* merged = new char[result.length() + 1];
std::strcpy(merged, result.c_str());
std::cout << merged << std::endl;
delete[] merged;
//return merged;
return "[DCSP_ONNX]:Create session failed.";
}
}
char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult)
{
#ifdef benchmark
clock_t starttime_1 = clock();
#endif // benchmark
char* Ret = RET_OK;
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4)
{
float* blob = new float[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
}
return Ret;
}
template<typename N>
char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult)
{
Ort::Value inputTensor = Ort::Value::CreateTensor<std::remove_pointer<N>::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size());
#ifdef benchmark
clock_t starttime_2 = clock();
#endif // benchmark
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size());
#ifdef benchmark
clock_t starttime_3 = clock();
#endif // benchmark
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
std::vector<int64_t>outputNodeDims = tensor_info.GetShape();
std::remove_pointer<N>::type* output = outputTensor.front().GetTensorMutableData<std::remove_pointer<N>::type>();
delete blob;
switch (modelType)
{
case 1:
{
int strideNum = outputNodeDims[2];
int signalResultNum = outputNodeDims[1];
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
rowData = rowData.t();
float* data = (float*)rowData.data;
float x_factor = iImg.cols / 640.;
float y_factor = iImg.rows / 640.;
for (int i = 0; i < strideNum; ++i)
{
float* classesScores = data + 4;
cv::Mat scores(1, classesNum, CV_32FC1, classesScores);
cv::Point class_id;
double maxClassScore;
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
if (maxClassScore > rectConfidenceThreshold)
{
confidences.push_back(maxClassScore);
class_ids.push_back(class_id.x);
float x = data[0];
float y = data[1];
float w = data[2];
float h = data[3];
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.push_back(cv::Rect(left, top, width, height));
}
data += signalResultNum;
}
std::vector<int> nmsResult;
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
for (int i = 0; i < nmsResult.size(); ++i)
{
int idx = nmsResult[i];
DCSP_RESULT result;
result.classId = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
oResult.push_back(result);
}
#ifdef benchmark
clock_t starttime_4 = clock();
double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
}
else
{
std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl;
}
#endif // benchmark
break;
}
}
char* Ret = RET_OK;
return Ret;
}
char* DCSP_CORE::WarmUpSession()
{
clock_t starttime_1 = clock();
char* Ret = RET_OK;
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4)
{
float* blob = new float[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
}
return Ret;
}

@ -0,0 +1,83 @@
#pragma once
#define _CRT_SECURE_NO_WARNINGS
#define RET_OK nullptr
#include <string>
#include <vector>
#include <stdio.h>
#include "io.h"
#include "direct.h"
#include "opencv.hpp"
#include <Windows.h>
#include "onnxruntime_cxx_api.h"
enum MODEL_TYPE
{
//FLOAT32 MODEL
YOLO_ORIGIN_V5 = 0,
YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
YOLO_POSE_V8 = 2,
YOLO_CLS_V8 = 3
};
typedef struct _DCSP_INIT_PARAM
{
std::string ModelPath;
MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
std::vector<int> imgSize={640, 640};
int classesNum=80;
float RectConfidenceThreshold = 0.6;
float iouThreshold = 0.5;
bool CudaEnable = false;
int LogSeverityLevel = 3;
int IntraOpNumThreads = 1;
}DCSP_INIT_PARAM;
typedef struct _DCSP_RESULT
{
int classId;
float confidence;
cv::Rect box;
}DCSP_RESULT;
class DCSP_CORE
{
public:
DCSP_CORE();
~DCSP_CORE();
public:
char* CreateSession(DCSP_INIT_PARAM &iParams);
char* RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT>& oResult);
char* WarmUpSession();
template<typename N>
char* TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector<int64_t>& inputNodeDims, std::vector<DCSP_RESULT>& oResult);
private:
Ort::Env env;
Ort::Session* session;
bool cudaEnable;
Ort::RunOptions options;
std::vector<const char*> inputNodeNames;
std::vector<const char*> outputNodeNames;
int classesNum;
MODEL_TYPE modelType;
std::vector<int> imgSize;
float rectConfidenceThreshold;
float iouThreshold;
};

@ -0,0 +1,44 @@
#include <iostream>
#include <stdio.h>
#include "inference.h"
#include <filesystem>
void file_iterator(DCSP_CORE*& p)
{
std::filesystem::path img_path = R"(E:\project\Project_C++\DCPS_ONNX\TEST_ORIGIN)";
int k = 0;
for (auto& i : std::filesystem::directory_iterator(img_path))
{
if (i.path().extension() == ".jpg")
{
std::string img_path = i.path().string();
//std::cout << img_path << std::endl;
cv::Mat img = cv::imread(img_path);
std::vector<DCSP_RESULT> res;
char* ret = p->RunSession(img, res);
for (int i = 0; i < res.size(); i++)
{
cv::rectangle(img, res.at(i).box, cv::Scalar(125, 123, 0), 3);
}
k++;
cv::imshow("TEST_ORIGIN", img);
cv::waitKey(0);
cv::destroyAllWindows();
//cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img);
}
}
}
int main()
{
DCSP_CORE* p1 = new DCSP_CORE;
std::string model_path = "yolov8n.onnx";
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 80, 0.1, 0.5, false };
char* ret = p1->CreateSession(params);
file_iterator(p1);
}
Loading…
Cancel
Save