|
|
|
@ -65,7 +65,7 @@ class BaseDataset(Dataset):
|
|
|
|
|
self.ims = [None] * self.ni
|
|
|
|
|
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
|
|
|
|
|
if cache:
|
|
|
|
|
self.cache_images()
|
|
|
|
|
self.cache_images(cache)
|
|
|
|
|
|
|
|
|
|
# transforms
|
|
|
|
|
self.transforms = self.build_transforms(hyp=hyp)
|
|
|
|
@ -127,20 +127,20 @@ class BaseDataset(Dataset):
|
|
|
|
|
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
|
|
|
|
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
|
|
|
|
|
|
|
|
|
def cache_images(self):
|
|
|
|
|
def cache_images(self, cache):
|
|
|
|
|
# cache images to memory or disk
|
|
|
|
|
gb = 0 # Gigabytes of cached images
|
|
|
|
|
self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni
|
|
|
|
|
fcn = self.cache_images_to_disk if self.cache == "disk" else self.load_image
|
|
|
|
|
fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
|
|
|
|
|
results = ThreadPool(NUM_THREADS).imap(fcn, range(self.ni))
|
|
|
|
|
pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
|
|
|
|
|
for i, x in pbar:
|
|
|
|
|
if self.cache == "disk":
|
|
|
|
|
if cache == "disk":
|
|
|
|
|
gb += self.npy_files[i].stat().st_size
|
|
|
|
|
else: # 'ram'
|
|
|
|
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
|
|
|
|
gb += self.ims[i].nbytes
|
|
|
|
|
pbar.desc = f"{self.prefix}Caching images ({gb / 1E9:.1f}GB {self.cache})"
|
|
|
|
|
pbar.desc = f"{self.prefix}Caching images ({gb / 1E9:.1f}GB {cache})"
|
|
|
|
|
pbar.close()
|
|
|
|
|
|
|
|
|
|
def cache_images_to_disk(self, i):
|
|
|
|
|