`ultralytics 8.0.127` add FastSAM model (#3390)
Co-authored-by: dingwenchao <12962189468@163.com> Co-authored-by: 丁文超 <dingwenchao@dingwenchaodeMacBook-Pro.local> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>single_channel
parent
91905b4b0b
commit
400f3f72a1
@ -1,13 +1,14 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
__version__ = '8.0.126'
|
__version__ = '8.0.127'
|
||||||
|
|
||||||
from ultralytics.hub import start
|
from ultralytics.hub import start
|
||||||
from ultralytics.vit.rtdetr import RTDETR
|
from ultralytics.vit.rtdetr import RTDETR
|
||||||
from ultralytics.vit.sam import SAM
|
from ultralytics.vit.sam import SAM
|
||||||
from ultralytics.yolo.engine.model import YOLO
|
from ultralytics.yolo.engine.model import YOLO
|
||||||
|
from ultralytics.yolo.fastsam import FastSAM
|
||||||
from ultralytics.yolo.nas import NAS
|
from ultralytics.yolo.nas import NAS
|
||||||
from ultralytics.yolo.utils.checks import check_yolo as checks
|
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||||
from ultralytics.yolo.utils.downloads import download
|
from ultralytics.yolo.utils.downloads import download
|
||||||
|
|
||||||
__all__ = '__version__', 'YOLO', 'NAS', 'SAM', 'RTDETR', 'checks', 'start', 'download' # allow simpler import
|
__all__ = '__version__', 'YOLO', 'NAS', 'SAM', 'RTDETR', 'checks', 'start', 'download', 'FastSAM' # allow simpler import
|
||||||
|
@ -0,0 +1,8 @@
|
|||||||
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
|
from .model import FastSAM
|
||||||
|
from .predict import FastSAMPredictor
|
||||||
|
from .prompt import FastSAMPrompt
|
||||||
|
from .val import FastSAMValidator
|
||||||
|
|
||||||
|
__all__ = 'FastSAMPredictor', 'FastSAM', 'FastSAMPrompt', 'FastSAMValidator'
|
@ -0,0 +1,104 @@
|
|||||||
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
"""
|
||||||
|
FastSAM model interface.
|
||||||
|
|
||||||
|
Usage - Predict:
|
||||||
|
from ultralytics import FastSAM
|
||||||
|
|
||||||
|
model = FastSAM('last.pt')
|
||||||
|
results = model.predict('ultralytics/assets/bus.jpg')
|
||||||
|
"""
|
||||||
|
|
||||||
|
from ultralytics.yolo.cfg import get_cfg
|
||||||
|
from ultralytics.yolo.engine.exporter import Exporter
|
||||||
|
from ultralytics.yolo.engine.model import YOLO
|
||||||
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ROOT, is_git_dir
|
||||||
|
from ultralytics.yolo.utils.checks import check_imgsz
|
||||||
|
|
||||||
|
from ...yolo.utils.torch_utils import model_info, smart_inference_mode
|
||||||
|
from .predict import FastSAMPredictor
|
||||||
|
|
||||||
|
|
||||||
|
class FastSAM(YOLO):
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def predict(self, source=None, stream=False, **kwargs):
|
||||||
|
"""
|
||||||
|
Perform prediction using the YOLO model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
||||||
|
Accepts all source types accepted by the YOLO model.
|
||||||
|
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
||||||
|
**kwargs : Additional keyword arguments passed to the predictor.
|
||||||
|
Check the 'configuration' section in the documentation for all available options.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
||||||
|
"""
|
||||||
|
if source is None:
|
||||||
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
|
||||||
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||||
|
overrides = self.overrides.copy()
|
||||||
|
overrides['conf'] = 0.25
|
||||||
|
overrides.update(kwargs) # prefer kwargs
|
||||||
|
overrides['mode'] = kwargs.get('mode', 'predict')
|
||||||
|
assert overrides['mode'] in ['track', 'predict']
|
||||||
|
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python
|
||||||
|
self.predictor = FastSAMPredictor(overrides=overrides)
|
||||||
|
self.predictor.setup_model(model=self.model, verbose=False)
|
||||||
|
|
||||||
|
return self.predictor(source, stream=stream)
|
||||||
|
|
||||||
|
def train(self, **kwargs):
|
||||||
|
"""Function trains models but raises an error as FastSAM models do not support training."""
|
||||||
|
raise NotImplementedError("FastSAM models don't support training")
|
||||||
|
|
||||||
|
def val(self, **kwargs):
|
||||||
|
"""Run validation given dataset."""
|
||||||
|
overrides = dict(task='segment', mode='val')
|
||||||
|
overrides.update(kwargs) # prefer kwargs
|
||||||
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||||
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
||||||
|
validator = FastSAM(args=args)
|
||||||
|
validator(model=self.model)
|
||||||
|
self.metrics = validator.metrics
|
||||||
|
return validator.metrics
|
||||||
|
|
||||||
|
@smart_inference_mode()
|
||||||
|
def export(self, **kwargs):
|
||||||
|
"""
|
||||||
|
Export model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
||||||
|
"""
|
||||||
|
overrides = dict(task='detect')
|
||||||
|
overrides.update(kwargs)
|
||||||
|
overrides['mode'] = 'export'
|
||||||
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
||||||
|
args.task = self.task
|
||||||
|
if args.imgsz == DEFAULT_CFG.imgsz:
|
||||||
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
||||||
|
if args.batch == DEFAULT_CFG.batch:
|
||||||
|
args.batch = 1 # default to 1 if not modified
|
||||||
|
return Exporter(overrides=args)(model=self.model)
|
||||||
|
|
||||||
|
def info(self, detailed=False, verbose=True):
|
||||||
|
"""
|
||||||
|
Logs model info.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detailed (bool): Show detailed information about model.
|
||||||
|
verbose (bool): Controls verbosity.
|
||||||
|
"""
|
||||||
|
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||||
|
|
||||||
|
def __call__(self, source=None, stream=False, **kwargs):
|
||||||
|
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||||
|
return self.predict(source, stream, **kwargs)
|
||||||
|
|
||||||
|
def __getattr__(self, attr):
|
||||||
|
"""Raises error if object has no requested attribute."""
|
||||||
|
name = self.__class__.__name__
|
||||||
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
@ -0,0 +1,51 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.yolo.engine.results import Results
|
||||||
|
from ultralytics.yolo.fastsam.utils import bbox_iou
|
||||||
|
from ultralytics.yolo.utils import DEFAULT_CFG, ops
|
||||||
|
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
||||||
|
|
||||||
|
|
||||||
|
class FastSAMPredictor(DetectionPredictor):
|
||||||
|
|
||||||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||||
|
super().__init__(cfg, overrides, _callbacks)
|
||||||
|
self.args.task = 'segment'
|
||||||
|
|
||||||
|
def postprocess(self, preds, img, orig_imgs):
|
||||||
|
"""TODO: filter by classes."""
|
||||||
|
p = ops.non_max_suppression(preds[0],
|
||||||
|
self.args.conf,
|
||||||
|
self.args.iou,
|
||||||
|
agnostic=self.args.agnostic_nms,
|
||||||
|
max_det=self.args.max_det,
|
||||||
|
nc=len(self.model.names),
|
||||||
|
classes=self.args.classes)
|
||||||
|
full_box = torch.zeros_like(p[0][0])
|
||||||
|
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
|
||||||
|
full_box = full_box.view(1, -1)
|
||||||
|
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
|
||||||
|
if critical_iou_index.numel() != 0:
|
||||||
|
full_box[0][4] = p[0][critical_iou_index][:, 4]
|
||||||
|
full_box[0][6:] = p[0][critical_iou_index][:, 6:]
|
||||||
|
p[0][critical_iou_index] = full_box
|
||||||
|
results = []
|
||||||
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||||
|
for i, pred in enumerate(p):
|
||||||
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||||
|
path = self.batch[0]
|
||||||
|
img_path = path[i] if isinstance(path, list) else path
|
||||||
|
if not len(pred): # save empty boxes
|
||||||
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
|
||||||
|
continue
|
||||||
|
if self.args.retina_masks:
|
||||||
|
if not isinstance(orig_imgs, torch.Tensor):
|
||||||
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||||
|
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
|
||||||
|
else:
|
||||||
|
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
|
||||||
|
if not isinstance(orig_imgs, torch.Tensor):
|
||||||
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||||
|
results.append(
|
||||||
|
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
|
||||||
|
return results
|
@ -0,0 +1,63 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
|
||||||
|
'''Adjust bounding boxes to stick to image border if they are within a certain threshold.
|
||||||
|
Args:
|
||||||
|
boxes: (n, 4)
|
||||||
|
image_shape: (height, width)
|
||||||
|
threshold: pixel threshold
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
adjusted_boxes: adjusted bounding boxes
|
||||||
|
'''
|
||||||
|
|
||||||
|
# Image dimensions
|
||||||
|
h, w = image_shape
|
||||||
|
|
||||||
|
# Adjust boxes
|
||||||
|
boxes[:, 0] = torch.where(boxes[:, 0] < threshold, 0, boxes[:, 0]) # x1
|
||||||
|
boxes[:, 1] = torch.where(boxes[:, 1] < threshold, 0, boxes[:, 1]) # y1
|
||||||
|
boxes[:, 2] = torch.where(boxes[:, 2] > w - threshold, w, boxes[:, 2]) # x2
|
||||||
|
boxes[:, 3] = torch.where(boxes[:, 3] > h - threshold, h, boxes[:, 3]) # y2
|
||||||
|
|
||||||
|
return boxes
|
||||||
|
|
||||||
|
|
||||||
|
def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False):
|
||||||
|
'''Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes.
|
||||||
|
Args:
|
||||||
|
box1: (4, )
|
||||||
|
boxes: (n, 4)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
high_iou_indices: Indices of boxes with IoU > thres
|
||||||
|
'''
|
||||||
|
boxes = adjust_bboxes_to_image_border(boxes, image_shape)
|
||||||
|
# obtain coordinates for intersections
|
||||||
|
x1 = torch.max(box1[0], boxes[:, 0])
|
||||||
|
y1 = torch.max(box1[1], boxes[:, 1])
|
||||||
|
x2 = torch.min(box1[2], boxes[:, 2])
|
||||||
|
y2 = torch.min(box1[3], boxes[:, 3])
|
||||||
|
|
||||||
|
# compute the area of intersection
|
||||||
|
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
||||||
|
|
||||||
|
# compute the area of both individual boxes
|
||||||
|
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
||||||
|
box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
||||||
|
|
||||||
|
# compute the area of union
|
||||||
|
union = box1_area + box2_area - intersection
|
||||||
|
|
||||||
|
# compute the IoU
|
||||||
|
iou = intersection / union # Should be shape (n, )
|
||||||
|
if raw_output:
|
||||||
|
if iou.numel() == 0:
|
||||||
|
return 0
|
||||||
|
return iou
|
||||||
|
|
||||||
|
# get indices of boxes with IoU > thres
|
||||||
|
high_iou_indices = torch.nonzero(iou > iou_thres).flatten()
|
||||||
|
|
||||||
|
return high_iou_indices
|
@ -0,0 +1,244 @@
|
|||||||
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
|
from multiprocessing.pool import ThreadPool
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from ultralytics.yolo.utils import LOGGER, NUM_THREADS, ops
|
||||||
|
from ultralytics.yolo.utils.checks import check_requirements
|
||||||
|
from ultralytics.yolo.utils.metrics import SegmentMetrics, box_iou, mask_iou
|
||||||
|
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||||
|
from ultralytics.yolo.v8.detect import DetectionValidator
|
||||||
|
|
||||||
|
|
||||||
|
class FastSAMValidator(DetectionValidator):
|
||||||
|
|
||||||
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||||
|
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
|
||||||
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||||
|
self.args.task = 'segment'
|
||||||
|
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||||
|
|
||||||
|
def preprocess(self, batch):
|
||||||
|
"""Preprocesses batch by converting masks to float and sending to device."""
|
||||||
|
batch = super().preprocess(batch)
|
||||||
|
batch['masks'] = batch['masks'].to(self.device).float()
|
||||||
|
return batch
|
||||||
|
|
||||||
|
def init_metrics(self, model):
|
||||||
|
"""Initialize metrics and select mask processing function based on save_json flag."""
|
||||||
|
super().init_metrics(model)
|
||||||
|
self.plot_masks = []
|
||||||
|
if self.args.save_json:
|
||||||
|
check_requirements('pycocotools>=2.0.6')
|
||||||
|
self.process = ops.process_mask_upsample # more accurate
|
||||||
|
else:
|
||||||
|
self.process = ops.process_mask # faster
|
||||||
|
|
||||||
|
def get_desc(self):
|
||||||
|
"""Return a formatted description of evaluation metrics."""
|
||||||
|
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
|
||||||
|
'R', 'mAP50', 'mAP50-95)')
|
||||||
|
|
||||||
|
def postprocess(self, preds):
|
||||||
|
"""Postprocesses YOLO predictions and returns output detections with proto."""
|
||||||
|
p = ops.non_max_suppression(preds[0],
|
||||||
|
self.args.conf,
|
||||||
|
self.args.iou,
|
||||||
|
labels=self.lb,
|
||||||
|
multi_label=True,
|
||||||
|
agnostic=self.args.single_cls,
|
||||||
|
max_det=self.args.max_det,
|
||||||
|
nc=self.nc)
|
||||||
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||||
|
return p, proto
|
||||||
|
|
||||||
|
def update_metrics(self, preds, batch):
|
||||||
|
"""Metrics."""
|
||||||
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
||||||
|
idx = batch['batch_idx'] == si
|
||||||
|
cls = batch['cls'][idx]
|
||||||
|
bbox = batch['bboxes'][idx]
|
||||||
|
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||||
|
shape = batch['ori_shape'][si]
|
||||||
|
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||||
|
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||||
|
self.seen += 1
|
||||||
|
|
||||||
|
if npr == 0:
|
||||||
|
if nl:
|
||||||
|
self.stats.append((correct_bboxes, correct_masks, *torch.zeros(
|
||||||
|
(2, 0), device=self.device), cls.squeeze(-1)))
|
||||||
|
if self.args.plots:
|
||||||
|
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Masks
|
||||||
|
midx = [si] if self.args.overlap_mask else idx
|
||||||
|
gt_masks = batch['masks'][midx]
|
||||||
|
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:])
|
||||||
|
|
||||||
|
# Predictions
|
||||||
|
if self.args.single_cls:
|
||||||
|
pred[:, 5] = 0
|
||||||
|
predn = pred.clone()
|
||||||
|
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||||
|
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||||
|
|
||||||
|
# Evaluate
|
||||||
|
if nl:
|
||||||
|
height, width = batch['img'].shape[2:]
|
||||||
|
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||||
|
(width, height, width, height), device=self.device) # target boxes
|
||||||
|
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||||
|
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||||
|
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||||
|
correct_bboxes = self._process_batch(predn, labelsn)
|
||||||
|
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||||
|
correct_masks = self._process_batch(predn,
|
||||||
|
labelsn,
|
||||||
|
pred_masks,
|
||||||
|
gt_masks,
|
||||||
|
overlap=self.args.overlap_mask,
|
||||||
|
masks=True)
|
||||||
|
if self.args.plots:
|
||||||
|
self.confusion_matrix.process_batch(predn, labelsn)
|
||||||
|
|
||||||
|
# Append correct_masks, correct_boxes, pconf, pcls, tcls
|
||||||
|
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
|
||||||
|
|
||||||
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||||
|
if self.args.plots and self.batch_i < 3:
|
||||||
|
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
|
||||||
|
|
||||||
|
# Save
|
||||||
|
if self.args.save_json:
|
||||||
|
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||||
|
shape,
|
||||||
|
ratio_pad=batch['ratio_pad'][si])
|
||||||
|
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
|
||||||
|
# if self.args.save_txt:
|
||||||
|
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||||
|
|
||||||
|
def finalize_metrics(self, *args, **kwargs):
|
||||||
|
"""Sets speed and confusion matrix for evaluation metrics."""
|
||||||
|
self.metrics.speed = self.speed
|
||||||
|
self.metrics.confusion_matrix = self.confusion_matrix
|
||||||
|
|
||||||
|
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||||
|
"""
|
||||||
|
Return correct prediction matrix
|
||||||
|
Arguments:
|
||||||
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
||||||
|
labels (array[M, 5]), class, x1, y1, x2, y2
|
||||||
|
Returns:
|
||||||
|
correct (array[N, 10]), for 10 IoU levels
|
||||||
|
"""
|
||||||
|
if masks:
|
||||||
|
if overlap:
|
||||||
|
nl = len(labels)
|
||||||
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
||||||
|
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||||
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||||
|
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||||
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
|
||||||
|
gt_masks = gt_masks.gt_(0.5)
|
||||||
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||||
|
else: # boxes
|
||||||
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||||
|
|
||||||
|
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
|
||||||
|
correct_class = labels[:, 0:1] == detections[:, 5]
|
||||||
|
for i in range(len(self.iouv)):
|
||||||
|
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
|
||||||
|
if x[0].shape[0]:
|
||||||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
|
||||||
|
1).cpu().numpy() # [label, detect, iou]
|
||||||
|
if x[0].shape[0] > 1:
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||||
|
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||||
|
correct[matches[:, 1].astype(int), i] = True
|
||||||
|
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
|
||||||
|
|
||||||
|
def plot_val_samples(self, batch, ni):
|
||||||
|
"""Plots validation samples with bounding box labels."""
|
||||||
|
plot_images(batch['img'],
|
||||||
|
batch['batch_idx'],
|
||||||
|
batch['cls'].squeeze(-1),
|
||||||
|
batch['bboxes'],
|
||||||
|
batch['masks'],
|
||||||
|
paths=batch['im_file'],
|
||||||
|
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||||
|
names=self.names,
|
||||||
|
on_plot=self.on_plot)
|
||||||
|
|
||||||
|
def plot_predictions(self, batch, preds, ni):
|
||||||
|
"""Plots batch predictions with masks and bounding boxes."""
|
||||||
|
plot_images(
|
||||||
|
batch['img'],
|
||||||
|
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed
|
||||||
|
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
||||||
|
paths=batch['im_file'],
|
||||||
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||||
|
names=self.names,
|
||||||
|
on_plot=self.on_plot) # pred
|
||||||
|
self.plot_masks.clear()
|
||||||
|
|
||||||
|
def pred_to_json(self, predn, filename, pred_masks):
|
||||||
|
"""Save one JSON result."""
|
||||||
|
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
||||||
|
from pycocotools.mask import encode # noqa
|
||||||
|
|
||||||
|
def single_encode(x):
|
||||||
|
"""Encode predicted masks as RLE and append results to jdict."""
|
||||||
|
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
|
||||||
|
rle['counts'] = rle['counts'].decode('utf-8')
|
||||||
|
return rle
|
||||||
|
|
||||||
|
stem = Path(filename).stem
|
||||||
|
image_id = int(stem) if stem.isnumeric() else stem
|
||||||
|
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||||
|
pred_masks = np.transpose(pred_masks, (2, 0, 1))
|
||||||
|
with ThreadPool(NUM_THREADS) as pool:
|
||||||
|
rles = pool.map(single_encode, pred_masks)
|
||||||
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
||||||
|
self.jdict.append({
|
||||||
|
'image_id': image_id,
|
||||||
|
'category_id': self.class_map[int(p[5])],
|
||||||
|
'bbox': [round(x, 3) for x in b],
|
||||||
|
'score': round(p[4], 5),
|
||||||
|
'segmentation': rles[i]})
|
||||||
|
|
||||||
|
def eval_json(self, stats):
|
||||||
|
"""Return COCO-style object detection evaluation metrics."""
|
||||||
|
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||||
|
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||||
|
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||||
|
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||||
|
check_requirements('pycocotools>=2.0.6')
|
||||||
|
from pycocotools.coco import COCO # noqa
|
||||||
|
from pycocotools.cocoeval import COCOeval # noqa
|
||||||
|
|
||||||
|
for x in anno_json, pred_json:
|
||||||
|
assert x.is_file(), f'{x} file not found'
|
||||||
|
anno = COCO(str(anno_json)) # init annotations api
|
||||||
|
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||||
|
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
|
||||||
|
if self.is_coco:
|
||||||
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||||
|
eval.evaluate()
|
||||||
|
eval.accumulate()
|
||||||
|
eval.summarize()
|
||||||
|
idx = i * 4 + 2
|
||||||
|
stats[self.metrics.keys[idx + 1]], stats[
|
||||||
|
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||||
|
return stats
|
Loading…
Reference in new issue