|
|
@ -9,7 +9,7 @@ model: null # i.e. yolov8n.pt, yolov8n.yaml. Path to model file
|
|
|
|
data: null # i.e. coco128.yaml. Path to data file
|
|
|
|
data: null # i.e. coco128.yaml. Path to data file
|
|
|
|
epochs: 100 # number of epochs to train for
|
|
|
|
epochs: 100 # number of epochs to train for
|
|
|
|
patience: 50 # TODO: epochs to wait for no observable improvement for early stopping of training
|
|
|
|
patience: 50 # TODO: epochs to wait for no observable improvement for early stopping of training
|
|
|
|
batch_size: 16 # number of images per batch
|
|
|
|
batch: 16 # number of images per batch
|
|
|
|
imgsz: 640 # size of input images
|
|
|
|
imgsz: 640 # size of input images
|
|
|
|
save: True # save checkpoints
|
|
|
|
save: True # save checkpoints
|
|
|
|
cache: False # True/ram, disk or False. Use cache for data loading
|
|
|
|
cache: False # True/ram, disk or False. Use cache for data loading
|
|
|
@ -23,7 +23,6 @@ optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
|
|
|
verbose: False # whether to print verbose output
|
|
|
|
verbose: False # whether to print verbose output
|
|
|
|
seed: 0 # random seed for reproducibility
|
|
|
|
seed: 0 # random seed for reproducibility
|
|
|
|
deterministic: True # whether to enable deterministic mode
|
|
|
|
deterministic: True # whether to enable deterministic mode
|
|
|
|
local_rank: -1 # local rank for distributed training
|
|
|
|
|
|
|
|
single_cls: False # train multi-class data as single-class
|
|
|
|
single_cls: False # train multi-class data as single-class
|
|
|
|
image_weights: False # use weighted image selection for training
|
|
|
|
image_weights: False # use weighted image selection for training
|
|
|
|
rect: False # support rectangular training
|
|
|
|
rect: False # support rectangular training
|
|
|
@ -40,8 +39,8 @@ dropout: False # use dropout regularization
|
|
|
|
val: True # validate/test during training
|
|
|
|
val: True # validate/test during training
|
|
|
|
save_json: False # save results to JSON file
|
|
|
|
save_json: False # save results to JSON file
|
|
|
|
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
|
|
|
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
|
|
|
conf_thres: 0.001 # object confidence threshold for detection
|
|
|
|
conf: 0.001 # object confidence threshold for detection
|
|
|
|
iou_thres: 0.7 # intersection over union threshold for NMS
|
|
|
|
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
|
|
|
max_det: 300 # maximum number of detections per image
|
|
|
|
max_det: 300 # maximum number of detections per image
|
|
|
|
half: False # use half precision (FP16)
|
|
|
|
half: False # use half precision (FP16)
|
|
|
|
dnn: False # use OpenCV DNN for ONNX inference
|
|
|
|
dnn: False # use OpenCV DNN for ONNX inference
|
|
|
@ -57,7 +56,6 @@ hide_labels: False # hide labels
|
|
|
|
hide_conf: False # hide confidence scores
|
|
|
|
hide_conf: False # hide confidence scores
|
|
|
|
vid_stride: 1 # video frame-rate stride
|
|
|
|
vid_stride: 1 # video frame-rate stride
|
|
|
|
line_thickness: 3 # bounding box thickness (pixels)
|
|
|
|
line_thickness: 3 # bounding box thickness (pixels)
|
|
|
|
update: False # Update all models
|
|
|
|
|
|
|
|
visualize: False # visualize results
|
|
|
|
visualize: False # visualize results
|
|
|
|
augment: False # apply data augmentation to images
|
|
|
|
augment: False # apply data augmentation to images
|
|
|
|
agnostic_nms: False # class-agnostic NMS
|
|
|
|
agnostic_nms: False # class-agnostic NMS
|
|
|
|