HUB setup (#108)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
@ -71,8 +71,7 @@ from ultralytics.nn.tasks import ClassificationModel, DetectionModel, Segmentati
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||
from ultralytics.yolo.data.utils import check_dataset
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args, yaml_save
|
||||
from ultralytics.yolo.utils.callbacks import default_callbacks
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||
from ultralytics.yolo.utils.files import file_size, increment_path
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
@ -138,16 +137,15 @@ class Exporter:
|
||||
"""
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
if 'batch_size' not in overrides:
|
||||
overrides['batch_size'] = 1 # set default export batch size
|
||||
self.args = get_config(config, overrides)
|
||||
project = self.args.project or f"runs/{self.args.task}"
|
||||
name = self.args.name or "exp" # hardcode mode as export doesn't require it
|
||||
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
||||
self.save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# callbacks
|
||||
self.callbacks = defaultdict([])
|
||||
for callback, func in default_callbacks.items():
|
||||
self.add_callback(callback, func)
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
@smart_inference_mode()
|
||||
def __call__(self, model=None):
|
||||
@ -173,7 +171,6 @@ class Exporter:
|
||||
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
||||
|
||||
# Input
|
||||
self.args.batch_size = 1 # TODO: resolve this issue, default 16 not fit for export
|
||||
im = torch.zeros(self.args.batch_size, 3, *self.imgsz).to(self.device)
|
||||
file = Path(getattr(model, 'yaml_file', None) or Path(model.yaml['yaml_file']).name)
|
||||
|
||||
@ -765,18 +762,6 @@ class Exporter:
|
||||
LOGGER.info(f'{prefix} pipeline success')
|
||||
return model
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""
|
||||
appends the given callback
|
||||
"""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def set_callback(self, event: str, callback):
|
||||
"""
|
||||
overrides the existing callbacks with the given callback
|
||||
"""
|
||||
self.callbacks[event] = [callback]
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
for callback in self.callbacks.get(event, []):
|
||||
callback(self)
|
||||
|
@ -35,8 +35,7 @@ from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
|
||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, ops
|
||||
from ultralytics.yolo.utils.callbacks import default_callbacks
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, callbacks, colorstr, ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_imshow
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
|
||||
@ -90,11 +89,8 @@ class BasePredictor:
|
||||
self.view_img = None
|
||||
self.annotator = None
|
||||
self.data_path = None
|
||||
|
||||
# callbacks
|
||||
self.callbacks = defaultdict([])
|
||||
for callback, func in default_callbacks.items():
|
||||
self.add_callback(callback, func)
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def preprocess(self, img):
|
||||
pass
|
||||
@ -227,18 +223,6 @@ class BasePredictor:
|
||||
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||
self.vid_writer[idx].write(im0)
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""
|
||||
appends the given callback
|
||||
"""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def set_callback(self, event: str, callback):
|
||||
"""
|
||||
overrides the existing callbacks with the given callback
|
||||
"""
|
||||
self.callbacks[event] = [callback]
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
for callback in self.callbacks.get(event, []):
|
||||
callback(self)
|
||||
|
@ -21,11 +21,10 @@ from torch.optim import lr_scheduler
|
||||
from tqdm import tqdm
|
||||
|
||||
import ultralytics.yolo.utils as utils
|
||||
import ultralytics.yolo.utils.callbacks as callbacks
|
||||
from ultralytics import __version__
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr, yaml_save
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, callbacks, colorstr, yaml_save
|
||||
from ultralytics.yolo.utils.checks import check_file, print_args
|
||||
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
|
||||
from ultralytics.yolo.utils.files import get_latest_run, increment_path
|
||||
@ -88,7 +87,7 @@ class BaseTrainer:
|
||||
self.model = None
|
||||
self.callbacks = defaultdict(list)
|
||||
|
||||
# dirs
|
||||
# Dirs
|
||||
project = self.args.project or f"runs/{self.args.task}"
|
||||
name = self.args.name or f"{self.args.mode}"
|
||||
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
|
||||
@ -104,7 +103,7 @@ class BaseTrainer:
|
||||
if RANK == -1:
|
||||
print_args(dict(self.args))
|
||||
|
||||
# device
|
||||
# Device
|
||||
self.device = utils.torch_utils.select_device(self.args.device, self.batch_size)
|
||||
self.amp = self.device.type != 'cpu'
|
||||
self.scaler = amp.GradScaler(enabled=self.amp)
|
||||
@ -123,7 +122,7 @@ class BaseTrainer:
|
||||
self.lf = None
|
||||
self.scheduler = None
|
||||
|
||||
# epoch level metrics
|
||||
# Epoch level metrics
|
||||
self.best_fitness = None
|
||||
self.fitness = None
|
||||
self.loss = None
|
||||
@ -131,20 +130,20 @@ class BaseTrainer:
|
||||
self.loss_names = None
|
||||
self.csv = self.save_dir / 'results.csv'
|
||||
|
||||
for callback, func in callbacks.default_callbacks.items():
|
||||
self.add_callback(callback, func)
|
||||
# Callbacks
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
if RANK in {0, -1}:
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""
|
||||
appends the given callback
|
||||
Appends the given callback. TODO: unused, consider removing
|
||||
"""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def set_callback(self, event: str, callback):
|
||||
"""
|
||||
overrides the existing callbacks with the given callback
|
||||
Overrides the existing callbacks with the given callback. TODO: unused, consider removing
|
||||
"""
|
||||
self.callbacks[event] = [callback]
|
||||
|
||||
@ -469,7 +468,7 @@ class BaseTrainer:
|
||||
self.validator.args.save_json = True
|
||||
self.metrics = self.validator(model=f)
|
||||
self.metrics.pop('fitness', None)
|
||||
self.run_callbacks('on_val_end')
|
||||
self.run_callbacks('on_fit_epoch_end')
|
||||
|
||||
def check_resume(self):
|
||||
resume = self.args.resume
|
||||
|
@ -8,8 +8,7 @@ from tqdm import tqdm
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT
|
||||
from ultralytics.yolo.utils.callbacks import default_callbacks
|
||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, callbacks
|
||||
from ultralytics.yolo.utils.checks import check_imgsz
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
@ -66,10 +65,7 @@ class BaseValidator:
|
||||
exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
|
||||
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# callbacks
|
||||
self.callbacks = defaultdict(list)
|
||||
for callback, func in default_callbacks.items():
|
||||
self.add_callback(callback, func)
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
|
||||
@smart_inference_mode()
|
||||
def __call__(self, trainer=None, model=None):
|
||||
@ -77,7 +73,6 @@ class BaseValidator:
|
||||
Supports validation of a pre-trained model if passed or a model being trained
|
||||
if trainer is passed (trainer gets priority).
|
||||
"""
|
||||
self.run_callbacks('on_val_start')
|
||||
self.training = trainer is not None
|
||||
if self.training:
|
||||
self.device = trainer.device
|
||||
@ -89,6 +84,8 @@ class BaseValidator:
|
||||
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
|
||||
self.args.plots = trainer.epoch == trainer.epochs - 1 # always plot final epoch
|
||||
else:
|
||||
callbacks.add_integration_callbacks(self)
|
||||
self.run_callbacks('on_val_start')
|
||||
assert model is not None, "Either trainer or model is needed for validation"
|
||||
self.device = select_device(self.args.device, self.args.batch_size)
|
||||
self.args.half &= self.device.type != 'cpu'
|
||||
@ -167,18 +164,6 @@ class BaseValidator:
|
||||
stats = self.eval_json(stats) # update stats
|
||||
return stats
|
||||
|
||||
def add_callback(self, event: str, callback):
|
||||
"""
|
||||
appends the given callback
|
||||
"""
|
||||
self.callbacks[event].append(callback)
|
||||
|
||||
def set_callback(self, event: str, callback):
|
||||
"""
|
||||
overrides the existing callbacks with the given callback
|
||||
"""
|
||||
self.callbacks[event] = [callback]
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
for callback in self.callbacks.get(event, []):
|
||||
callback(self)
|
||||
|
Reference in New Issue
Block a user