Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent c6eb6720de
commit 2bc9a5c87e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -2,4 +2,4 @@ __version__ = "8.0.0.dev0"
from ultralytics.yolo.engine.model import YOLO
__all__ = ["__version__", "YOLO"] # allow simpler import
__all__ = ["__version__", "YOLO", "hub"] # allow simpler import

@ -0,0 +1,131 @@
import os
import shutil
import psutil
import requests
from IPython import display # to display images and clear console output
from ultralytics.hub.auth import Auth
from ultralytics.hub.session import HubTrainingSession
from ultralytics.hub.utils import PREFIX, split_key
from ultralytics.yolo.utils import LOGGER, emojis, is_colab
from ultralytics.yolo.utils.torch_utils import select_device
from ultralytics.yolo.v8.detect import DetectionTrainer
def checks(verbose=True):
if is_colab():
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
if verbose:
# System info
gib = 1 << 30 # bytes per GiB
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage("/")
display.clear_output()
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
else:
s = ''
select_device(newline=False)
LOGGER.info(f'Setup complete ✅ {s}')
def start(key=''):
# Start training models with Ultralytics HUB. Usage: from src.ultralytics import start; start('API_KEY')
def request_api_key(attempts=0):
"""Prompt the user to input their API key"""
import getpass
max_attempts = 3
tries = f"Attempt {str(attempts + 1)} of {max_attempts}" if attempts > 0 else ""
LOGGER.info(f"{PREFIX}Login. {tries}")
input_key = getpass.getpass("Enter your Ultralytics HUB API key:\n")
auth.api_key, model_id = split_key(input_key)
if not auth.authenticate():
attempts += 1
LOGGER.warning(f"{PREFIX}Invalid API key ⚠️\n")
if attempts < max_attempts:
return request_api_key(attempts)
raise ConnectionError(emojis(f"{PREFIX}Failed to authenticate ❌"))
else:
return model_id
try:
api_key, model_id = split_key(key)
auth = Auth(api_key) # attempts cookie login if no api key is present
attempts = 1 if len(key) else 0
if not auth.get_state():
if len(key):
LOGGER.warning(f"{PREFIX}Invalid API key ⚠️\n")
model_id = request_api_key(attempts)
LOGGER.info(f"{PREFIX}Authenticated ✅")
if not model_id:
raise ConnectionError(emojis('Connecting with global API key is not currently supported. ❌'))
session = HubTrainingSession(model_id=model_id, auth=auth)
session.check_disk_space()
# TODO: refactor, hardcoded for v8
args = session.model.copy()
args.pop("id")
args.pop("status")
args.pop("weights")
args["data"] = "coco128.yaml"
args["model"] = "yolov8n.yaml"
args["batch_size"] = 16
args["imgsz"] = 64
trainer = DetectionTrainer(overrides=args)
session.register_callbacks(trainer)
setattr(trainer, 'hub_session', session)
trainer.train()
except Exception as e:
LOGGER.warning(f"{PREFIX}{e}")
def reset_model(key=''):
# Reset a trained model to an untrained state
api_key, model_id = split_key(key)
r = requests.post('https://api.ultralytics.com/model-reset', json={"apiKey": api_key, "modelId": model_id})
if r.status_code == 200:
LOGGER.info(f"{PREFIX}model reset successfully")
return
LOGGER.warning(f"{PREFIX}model reset failure {r.status_code} {r.reason}")
def export_model(key='', format='torchscript'):
# Export a model to all formats
api_key, model_id = split_key(key)
formats = ('torchscript', 'onnx', 'openvino', 'engine', 'coreml', 'saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs',
'ultralytics_tflite', 'ultralytics_coreml')
assert format in formats, f"ERROR: Unsupported export format '{format}' passed, valid formats are {formats}"
r = requests.post('https://api.ultralytics.com/export',
json={
"apiKey": api_key,
"modelId": model_id,
"format": format})
assert r.status_code == 200, f"{PREFIX}{format} export failure {r.status_code} {r.reason}"
LOGGER.info(f"{PREFIX}{format} export started ✅")
def get_export(key='', format='torchscript'):
# Get an exported model dictionary with download URL
api_key, model_id = split_key(key)
formats = ('torchscript', 'onnx', 'openvino', 'engine', 'coreml', 'saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs',
'ultralytics_tflite', 'ultralytics_coreml')
assert format in formats, f"ERROR: Unsupported export format '{format}' passed, valid formats are {formats}"
r = requests.post('https://api.ultralytics.com/get-export',
json={
"apiKey": api_key,
"modelId": model_id,
"format": format})
assert r.status_code == 200, f"{PREFIX}{format} get_export failure {r.status_code} {r.reason}"
return r.json()
# temp. For checking
if __name__ == "__main__":
start(key="b3fba421be84a20dbe68644e14436d1cce1b0a0aaa_HeMfHgvHsseMPhdq7Ylz")

@ -0,0 +1,69 @@
import requests
from ultralytics.hub.config import HUB_API_ROOT
from ultralytics.hub.utils import request_with_credentials
from ultralytics.yolo.utils import is_colab
API_KEY_PATH = "https://hub.ultralytics.com/settings?tab=api+keys"
class Auth:
id_token = api_key = model_key = False
def __init__(self, api_key=None):
self.api_key = self._clean_api_key(api_key)
self.authenticate() if self.api_key else self.auth_with_cookies()
@staticmethod
def _clean_api_key(key: str) -> str:
"""Strip model from key if present"""
separator = "_"
return key.split(separator)[0] if separator in key else key
def authenticate(self) -> bool:
"""Attempt to authenticate with server"""
try:
header = self.get_auth_header()
if header:
r = requests.post(f"{HUB_API_ROOT}/v1/auth", headers=header)
if not r.json().get('success', False):
raise ConnectionError("Unable to authenticate.")
return True
raise ConnectionError("User has not authenticated locally.")
except ConnectionError:
self.id_token = self.api_key = False # reset invalid
return False
def auth_with_cookies(self) -> bool:
"""
Attempt to fetch authentication via cookies and set id_token.
User must be logged in to HUB and running in a supported browser.
"""
if not is_colab():
return False # Currently only works with Colab
try:
authn = request_with_credentials(f"{HUB_API_ROOT}/v1/auth/auto")
if authn.get("success", False):
self.id_token = authn.get("data", {}).get("idToken", None)
self.authenticate()
return True
raise ConnectionError("Unable to fetch browser authentication details.")
except ConnectionError:
self.id_token = False # reset invalid
return False
def get_auth_header(self):
if self.id_token:
return {"authorization": f"Bearer {self.id_token}"}
elif self.api_key:
return {"x-api-key": self.api_key}
else:
return None
def get_state(self) -> bool:
"""Get the authentication state"""
return self.id_token or self.api_key
def set_api_key(self, key: str):
"""Get the authentication state"""
self.api_key = key

@ -0,0 +1,12 @@
import os
# Global variables
REPO_URL = "https://github.com/ultralytics/yolov5.git"
REPO_BRANCH = "ultralytics/HUB" # "master"
ENVIRONMENT = os.environ.get("ULTRALYTICS_ENV", "production")
if ENVIRONMENT == 'production':
HUB_API_ROOT = "https://api.ultralytics.com"
else:
HUB_API_ROOT = "http://127.0.0.1:8000"
print(f'Connected to development server on {HUB_API_ROOT}')

@ -0,0 +1,121 @@
import signal
import sys
from pathlib import Path
from time import sleep
import requests
from ultralytics import __version__
from ultralytics.hub.config import HUB_API_ROOT
from ultralytics.hub.utils import check_dataset_disk_space, smart_request
from ultralytics.yolo.utils import LOGGER, is_colab, threaded
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
session = None
def signal_handler(signum, frame):
""" Confirm exit """
global hub_logger
LOGGER.info(f'Signal received. {signum} {frame}')
if isinstance(session, HubTrainingSession):
hub_logger.alive = False
del hub_logger
sys.exit(signum)
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
class HubTrainingSession:
def __init__(self, model_id, auth):
self.agent_id = None # identifies which instance is communicating with server
self.model_id = model_id
self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
self.auth_header = auth.get_auth_header()
self.rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
self.t = {} # rate limit timers (seconds)
self.metrics_queue = {} # metrics queue
self.alive = True # for heartbeats
self.model = self._get_model()
self._heartbeats() # start heartbeats
def __del__(self):
# Class destructor
self.alive = False
def upload_metrics(self):
payload = {"metrics": self.metrics_queue.copy(), "type": "metrics"}
smart_request(f'{self.api_url}', json=payload, headers=self.auth_header, code=2)
def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
# Upload a model to HUB
file = None
if Path(weights).is_file():
with open(weights, "rb") as f:
file = f.read()
if final:
smart_request(f'{self.api_url}/upload',
data={
"epoch": epoch,
"type": "final",
"map": map},
files={"best.pt": file},
headers=self.auth_header,
retry=10,
timeout=3600,
code=4)
else:
smart_request(f'{self.api_url}/upload',
data={
"epoch": epoch,
"type": "epoch",
"isBest": bool(is_best)},
headers=self.auth_header,
files={"last.pt": file},
code=3)
def _get_model(self):
# Returns model from database by id
api_url = f"{HUB_API_ROOT}/v1/models/{self.model_id}"
headers = self.auth_header
try:
r = smart_request(api_url, method="get", headers=headers, thread=False, code=0)
data = r.json().get("data", None)
if not data:
return
assert data['data'], 'ERROR: Dataset may still be processing. Please wait a minute and try again.' # RF fix
self.model_id = data["id"]
return data
except requests.exceptions.ConnectionError as e:
raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e
def check_disk_space(self):
if not check_dataset_disk_space(self.model['data']):
raise MemoryError("Not enough disk space")
# COMMENT: Should not be needed as HUB is now considered an integration and is in integrations_callbacks
# import ultralytics.yolo.utils.callbacks.hub as hub_callbacks
# @staticmethod
# def register_callbacks(trainer):
# for k, v in hub_callbacks.callbacks.items():
# trainer.add_callback(k, v)
@threaded
def _heartbeats(self):
while self.alive:
r = smart_request(f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
json={
"agent": AGENT_NAME,
"agentId": self.agent_id},
headers=self.auth_header,
retry=0,
code=5,
thread=False)
self.agent_id = r.json().get('data', {}).get('agentId', None)
sleep(self.rate_limits['heartbeat'])

@ -0,0 +1,139 @@
import shutil
import threading
import time
import uuid
import requests
from ultralytics.hub.config import HUB_API_ROOT
from ultralytics.yolo.utils import LOGGER, RANK, SETTINGS, colorstr, emojis
PREFIX = colorstr('Ultralytics: ')
HELP_MSG = 'If this issue persists please visit https://github.com/ultralytics/hub/issues for assistance.'
def check_dataset_disk_space(url='https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', sf=2.0):
# Check that url fits on disk with safety factor sf, i.e. require 2GB free if url size is 1GB with sf=2.0
gib = 1 << 30 # bytes per GiB
data = int(requests.head(url).headers['Content-Length']) / gib # dataset size (GB)
total, used, free = (x / gib for x in shutil.disk_usage("/")) # bytes
LOGGER.info(f'{PREFIX}{data:.3f} GB dataset, {free:.1f}/{total:.1f} GB free disk space')
if data * sf < free:
return True # sufficient space
LOGGER.warning(f'{PREFIX}WARNING: Insufficient free disk space {free:.1f} GB < {data * sf:.3f} GB required, '
f'training cancelled ❌. Please free {data * sf - free:.1f} GB additional disk space and try again.')
return False # insufficient space
def request_with_credentials(url: str) -> any:
""" Make a ajax request with cookies attached """
from google.colab import output # noqa
from IPython import display # noqa
display.display(
display.Javascript("""
window._hub_tmp = new Promise((resolve, reject) => {
const timeout = setTimeout(() => reject("Failed authenticating existing browser session"), 5000)
fetch("%s", {
method: 'POST',
credentials: 'include'
})
.then((response) => resolve(response.json()))
.then((json) => {
clearTimeout(timeout);
}).catch((err) => {
clearTimeout(timeout);
reject(err);
});
});
""" % url))
return output.eval_js("_hub_tmp")
# Deprecated TODO: eliminate this function?
def split_key(key: str = '') -> tuple[str, str]:
"""
Verify and split a 'api_key[sep]model_id' string, sep is one of '.' or '_'
Args:
key (str): The model key to split. If not provided, the user will be prompted to enter it.
Returns:
Tuple[str, str]: A tuple containing the API key and model ID.
"""
import getpass
error_string = emojis(f'{PREFIX}Invalid API key ⚠️\n') # error string
if not key:
key = getpass.getpass('Enter model key: ')
sep = '_' if '_' in key else '.' if '.' in key else None # separator
assert sep, error_string
api_key, model_id = key.split(sep)
assert len(api_key) and len(model_id), error_string
return api_key, model_id
def smart_request(*args, retry=3, timeout=30, thread=True, code=-1, method="post", **kwargs):
"""
Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
Args:
*args: Positional arguments to be passed to the requests function specified in method.
retry (int, optional): Number of retries to attempt before giving up. Default is 3.
timeout (int, optional): Timeout in seconds after which the function will give up retrying. Default is 30.
thread (bool, optional): Whether to execute the request in a separate daemon thread. Default is True.
code (int, optional): An identifier for the request, used for logging purposes. Default is -1.
method (str, optional): The HTTP method to use for the request. Choices are 'post' and 'get'. Default is 'post'.
**kwargs: Keyword arguments to be passed to the requests function specified in method.
Returns:
requests.Response: The HTTP response object. If the request is executed in a separate thread, returns None.
"""
retry_codes = (408, 500) # retry only these codes
methods = {'post': requests.post, 'get': requests.get} # request methods
def fcn(*args, **kwargs):
t0 = time.time()
for i in range(retry + 1):
if (time.time() - t0) > timeout:
break
r = methods[method](*args, **kwargs) # i.e. post(url, data, json, files)
if r.status_code == 200:
break
try:
m = r.json().get('message', 'No JSON message.')
except Exception:
m = 'Unable to read JSON.'
if i == 0:
if r.status_code in retry_codes:
m += f' Retrying {retry}x for {timeout}s.' if retry else ''
elif r.status_code == 429: # rate limit
h = r.headers # response headers
m = f"Rate limit reached ({h['X-RateLimit-Remaining']}/{h['X-RateLimit-Limit']}). " \
f"Please retry after {h['Retry-After']}s."
LOGGER.warning(f"{PREFIX}{m} {HELP_MSG} ({r.status_code} #{code})")
if r.status_code not in retry_codes:
return r
time.sleep(2 ** i) # exponential standoff
return r
if thread:
threading.Thread(target=fcn, args=args, kwargs=kwargs, daemon=True).start()
else:
return fcn(*args, **kwargs)
def sync_analytics(cfg, enabled=False):
"""
Sync analytics data if enabled in the global settings
Args:
cfg (DictConfig): Configuration for the task and mode.
enabled (bool): For debugging.
"""
if SETTINGS['sync'] and RANK in {-1, 0} and enabled:
cfg = dict(cfg) # convert type from DictConfig to dict
cfg['uuid'] = uuid.getnode() # add the device UUID to the configuration data
# Send a request to the HUB API to sync the analytics data
smart_request(f'{HUB_API_ROOT}/analytics', data=cfg, headers=None, code=3, retry=0)

@ -3,46 +3,48 @@ from pathlib import Path
import hydra
import ultralytics
from ultralytics import yolo
from ultralytics import hub, yolo
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr
from .utils import DEFAULT_CONFIG, LOGGER, colorstr
DIR = Path(__file__).parent
@hydra.main(version_base=None, config_path="configs", config_name="default")
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent.relative_to(DIR)), config_name=DEFAULT_CONFIG.name)
def cli(cfg):
cwd = Path().cwd()
LOGGER.info(f"{colorstr(f'Ultralytics YOLO v{ultralytics.__version__}')}")
"""
Run a specified task and mode with the given configuration.
Args:
cfg (DictConfig): Configuration for the task and mode.
"""
# LOGGER.info(f"{colorstr(f'Ultralytics YOLO v{ultralytics.__version__}')}")
task, mode = cfg.task.lower(), cfg.mode.lower()
if task == "init": # special case
shutil.copy2(DEFAULT_CONFIG, cwd)
# Special case for initializing the configuration
if task == "init":
shutil.copy2(DEFAULT_CONFIG, Path.cwd())
LOGGER.info(f"""
{colorstr("YOLO:")} configuration saved to {cwd / DEFAULT_CONFIG.name}.
{colorstr("YOLO:")} configuration saved to {Path.cwd() / DEFAULT_CONFIG.name}.
To run experiments using custom configuration:
yolo task='task' mode='mode' --config-name config_file.yaml
""")
return
elif task == "detect":
module = yolo.v8.detect
elif task == "segment":
module = yolo.v8.segment
elif task == "classify":
module = yolo.v8.classify
elif task == "export":
func = yolo.engine.exporter.export
else:
raise SyntaxError("task not recognized. Choices are `'detect', 'segment', 'classify'`")
if mode == "train":
func = module.train
elif mode == "val":
func = module.val
elif mode == "predict":
func = module.predict
elif mode == "export":
func = yolo.engine.exporter.export
else:
raise SyntaxError("mode not recognized. Choices are `'train', 'val', 'predict', 'export'`")
# Mapping from task to module
task_module_map = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}
module = task_module_map.get(task)
if not module:
raise SyntaxError(f"task not recognized. Choices are {', '.join(task_module_map.keys())}")
# Mapping from mode to function
mode_func_map = {
"train": module.train,
"val": module.val,
"predict": module.predict,
"export": yolo.engine.exporter.export,
"checks": hub.checks}
func = mode_func_map.get(mode)
if not func:
raise SyntaxError(f"mode not recognized. Choices are {', '.join(mode_func_map.keys())}")
func(cfg)

@ -8,6 +8,7 @@ mode: "train" # choices=['train', 'val', 'predict'] # mode to run task in.
model: null # i.e. yolov5s.pt, yolo.yaml. Path to model file
data: null # i.e. coco128.yaml. Path to data file
epochs: 100 # number of epochs to train for
patience: 50 # TODO: epochs to wait for no observable improvement for early stopping of training
batch_size: 16 # number of images per batch
imgsz: 640 # size of input images
save: True # save checkpoints

@ -71,8 +71,7 @@ from ultralytics.nn.tasks import ClassificationModel, DetectionModel, Segmentati
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import check_dataset
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default_args, yaml_save
from ultralytics.yolo.utils.callbacks import default_callbacks
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size, increment_path
from ultralytics.yolo.utils.ops import Profile
@ -138,16 +137,15 @@ class Exporter:
"""
if overrides is None:
overrides = {}
if 'batch_size' not in overrides:
overrides['batch_size'] = 1 # set default export batch size
self.args = get_config(config, overrides)
project = self.args.project or f"runs/{self.args.task}"
name = self.args.name or "exp" # hardcode mode as export doesn't require it
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
self.save_dir.mkdir(parents=True, exist_ok=True)
# callbacks
self.callbacks = defaultdict([])
for callback, func in default_callbacks.items():
self.add_callback(callback, func)
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
callbacks.add_integration_callbacks(self)
@smart_inference_mode()
def __call__(self, model=None):
@ -173,7 +171,6 @@ class Exporter:
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
# Input
self.args.batch_size = 1 # TODO: resolve this issue, default 16 not fit for export
im = torch.zeros(self.args.batch_size, 3, *self.imgsz).to(self.device)
file = Path(getattr(model, 'yaml_file', None) or Path(model.yaml['yaml_file']).name)
@ -765,18 +762,6 @@ class Exporter:
LOGGER.info(f'{prefix} pipeline success')
return model
def add_callback(self, event: str, callback):
"""
appends the given callback
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
overrides the existing callbacks with the given callback
"""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)

@ -35,8 +35,7 @@ from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, ops
from ultralytics.yolo.utils.callbacks import default_callbacks
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, callbacks, colorstr, ops
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_imshow
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
@ -90,11 +89,8 @@ class BasePredictor:
self.view_img = None
self.annotator = None
self.data_path = None
# callbacks
self.callbacks = defaultdict([])
for callback, func in default_callbacks.items():
self.add_callback(callback, func)
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
callbacks.add_integration_callbacks(self)
def preprocess(self, img):
pass
@ -227,18 +223,6 @@ class BasePredictor:
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
self.vid_writer[idx].write(im0)
def add_callback(self, event: str, callback):
"""
appends the given callback
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
overrides the existing callbacks with the given callback
"""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)

@ -21,11 +21,10 @@ from torch.optim import lr_scheduler
from tqdm import tqdm
import ultralytics.yolo.utils as utils
import ultralytics.yolo.utils.callbacks as callbacks
from ultralytics import __version__
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, colorstr, yaml_save
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, callbacks, colorstr, yaml_save
from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path
@ -88,7 +87,7 @@ class BaseTrainer:
self.model = None
self.callbacks = defaultdict(list)
# dirs
# Dirs
project = self.args.project or f"runs/{self.args.task}"
name = self.args.name or f"{self.args.mode}"
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
@ -104,7 +103,7 @@ class BaseTrainer:
if RANK == -1:
print_args(dict(self.args))
# device
# Device
self.device = utils.torch_utils.select_device(self.args.device, self.batch_size)
self.amp = self.device.type != 'cpu'
self.scaler = amp.GradScaler(enabled=self.amp)
@ -123,7 +122,7 @@ class BaseTrainer:
self.lf = None
self.scheduler = None
# epoch level metrics
# Epoch level metrics
self.best_fitness = None
self.fitness = None
self.loss = None
@ -131,20 +130,20 @@ class BaseTrainer:
self.loss_names = None
self.csv = self.save_dir / 'results.csv'
for callback, func in callbacks.default_callbacks.items():
self.add_callback(callback, func)
# Callbacks
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
if RANK in {0, -1}:
callbacks.add_integration_callbacks(self)
def add_callback(self, event: str, callback):
"""
appends the given callback
Appends the given callback. TODO: unused, consider removing
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
overrides the existing callbacks with the given callback
Overrides the existing callbacks with the given callback. TODO: unused, consider removing
"""
self.callbacks[event] = [callback]
@ -469,7 +468,7 @@ class BaseTrainer:
self.validator.args.save_json = True
self.metrics = self.validator(model=f)
self.metrics.pop('fitness', None)
self.run_callbacks('on_val_end')
self.run_callbacks('on_fit_epoch_end')
def check_resume(self):
resume = self.args.resume

@ -8,8 +8,7 @@ from tqdm import tqdm
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT
from ultralytics.yolo.utils.callbacks import default_callbacks
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT, callbacks
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
@ -66,10 +65,7 @@ class BaseValidator:
exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# callbacks
self.callbacks = defaultdict(list)
for callback, func in default_callbacks.items():
self.add_callback(callback, func)
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
@smart_inference_mode()
def __call__(self, trainer=None, model=None):
@ -77,7 +73,6 @@ class BaseValidator:
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.run_callbacks('on_val_start')
self.training = trainer is not None
if self.training:
self.device = trainer.device
@ -89,6 +84,8 @@ class BaseValidator:
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
self.args.plots = trainer.epoch == trainer.epochs - 1 # always plot final epoch
else:
callbacks.add_integration_callbacks(self)
self.run_callbacks('on_val_start')
assert model is not None, "Either trainer or model is needed for validation"
self.device = select_device(self.args.device, self.args.batch_size)
self.args.half &= self.device.type != 'cpu'
@ -167,18 +164,6 @@ class BaseValidator:
stats = self.eval_json(stats) # update stats
return stats
def add_callback(self, event: str, callback):
"""
appends the given callback
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
overrides the existing callbacks with the given callback
"""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)

@ -249,26 +249,6 @@ def threaded(func):
return wrapper
def get_settings(file=USER_CONFIG_DIR / 'settings.yaml'):
"""
Function that loads a global settings YAML, or creates it and populates it with default values if it does not exist.
If the datasets or weights directories are set to None, the current working directory will be used.
The 'sync' setting determines whether analytics will be synced to help with YOLO development.
"""
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
with torch_distributed_zero_first(RANK):
if not file.exists():
settings = {
'datasets_dir': None, # default datasets directory. If None, current working directory is used.
'weights_dir': None, # default weights directory. If None, current working directory is used.
'sync': True} # sync analytics to help with YOLO development
yaml_save(file, settings)
return yaml_load(file)
def yaml_save(file='data.yaml', data=None):
"""
Save YAML data to a file.
@ -305,6 +285,26 @@ def yaml_load(file='data.yaml'):
return {**yaml.safe_load(f), 'yaml_file': file}
def get_settings(file=USER_CONFIG_DIR / 'settings.yaml'):
"""
Function that loads a global settings YAML, or creates it and populates it with default values if it does not exist.
If the datasets or weights directories are set to None, the current working directory will be used.
The 'sync' setting determines whether analytics will be synced to help with YOLO development.
"""
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
with torch_distributed_zero_first(RANK):
if not file.exists():
settings = {
'datasets_dir': None, # default datasets directory. If None, current working directory is used.
'weights_dir': None, # default weights directory. If None, current working directory is used.
'sync': True} # sync analytics to help with YOLO development
yaml_save(file, settings)
return yaml_load(file)
# Run below code on utils init -----------------------------------------------------------------------------------------
# Set logger

@ -135,11 +135,12 @@ default_callbacks = {
'on_export_end': on_export_end}
def add_integration_callbacks(trainer):
def add_integration_callbacks(instance):
from .clearml import callbacks as clearml_callbacks
from .tb import callbacks as tb_callbacks
from .hub import callbacks as hub_callbacks
from .tensorboard import callbacks as tb_callbacks
from .wb import callbacks as wb_callbacks
for x in clearml_callbacks, tb_callbacks, wb_callbacks:
for x in clearml_callbacks, hub_callbacks, tb_callbacks, wb_callbacks:
for k, v in x.items():
trainer.add_callback(k, v) # add_callback(name, func)
instance.callbacks[k].append(v) # callback[name].append(func)

@ -0,0 +1,80 @@
import json
from time import time
import torch
from ultralytics.hub.utils import PREFIX, sync_analytics
from ultralytics.yolo.utils import LOGGER
def on_pretrain_routine_end(trainer):
session = getattr(trainer, 'hub_session', None)
if session:
# Start timer for upload rate limit
LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀")
session.t = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit
def on_fit_epoch_end(trainer):
session = getattr(trainer, 'hub_session', None)
if session:
# Upload metrics after val end
metrics = trainer.metrics
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
metrics[k] = v.item()
session.metrics_queue[trainer.epoch] = json.dumps(metrics) # json string
if time() - session.t['metrics'] > session.rate_limits['metrics']:
session.upload_metrics()
session.t['metrics'] = time() # reset timer
session.metrics_queue = {} # reset queue
def on_model_save(trainer):
session = getattr(trainer, 'hub_session', None)
if session:
# Upload checkpoints with rate limiting
is_best = trainer.best_fitness == trainer.fitness
if time() - session.t['ckpt'] > session.rate_limits['ckpt']:
LOGGER.info(f"{PREFIX}Uploading checkpoint {session.model_id}")
session.upload_model(trainer.epoch, trainer.last, is_best)
session.t['ckpt'] = time() # reset timer
def on_train_end(trainer):
session = getattr(trainer, 'hub_session', None)
if session:
# Upload final model and metrics with exponential standoff
LOGGER.info(f"{PREFIX}Training completed successfully ✅\n"
f"{PREFIX}Uploading final {session.model_id}")
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics['metrics/mAP50(B)'], final=True)
session.alive = False # stop heartbeats
LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀")
def on_train_start(trainer):
sync_analytics(trainer.args)
def on_val_start(validator):
sync_analytics(validator.args)
def on_predict_start(predictor):
sync_analytics(predictor.args)
def on_export_start(exporter):
sync_analytics(exporter.args)
callbacks = {
"on_pretrain_routine_end": on_pretrain_routine_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_model_save": on_model_save,
"on_train_end": on_train_end,
"on_train_start": on_train_start,
"on_val_start": on_val_start,
"on_predict_start": on_predict_start,
"on_export_start": on_export_start}
Loading…
Cancel
Save