Minor fixes (#162)

single_channel
Laughing 2 years ago committed by GitHub
parent 9a2f67b3b4
commit 20fee4100c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -118,6 +118,7 @@ class YOLO:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides["conf"] = 0.25
overrides.update(kwargs)
overrides["mode"] = "predict"
predictor = self.PredictorClass(overrides=overrides)

@ -186,9 +186,9 @@ class Loss:
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
target_scores_sum, fg_mask)
loss[0] *= 7.5 # box gain
loss[1] *= 0.5 # cls gain
loss[2] *= 1.5 # dfl gain
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.cls # cls gain
loss[2] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)

@ -2,18 +2,18 @@ from copy import copy
import hydra
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.tasks import SegmentationModel
from ultralytics.yolo import v8
from ultralytics.yolo.utils import DEFAULT_CONFIG
from ultralytics.yolo.utils.loss import BboxLoss
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.yolo.utils.ops import crop_mask, xyxy2xywh
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors
from ultralytics.yolo.utils.tal import make_anchors
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect.train import Loss
# BaseTrainer python usage
class SegmentationTrainer(v8.detect.DetectionTrainer):
@ -55,51 +55,12 @@ class SegmentationTrainer(v8.detect.DetectionTrainer):
# Criterion class for computing training losses
class SegLoss:
class SegLoss(Loss):
def __init__(self, model, overlap=True): # model must be de-paralleled
device = next(model.parameters()).device # get model device
h = model.args # hyperparameters
m = model.model[-1] # Detect() module
self.bce = nn.BCEWithLogitsLoss(reduction='none')
self.hyp = h
self.stride = m.stride # model strides
self.nc = m.nc # number of classes
self.no = m.no
self.nm = m.nm # number of masks
self.reg_max = m.reg_max
super().__init__(model)
self.nm = model.model[-1].nm # number of masks
self.overlap = overlap
self.device = device
self.use_dfl = m.reg_max > 1
self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
def preprocess(self, targets, batch_size, scale_tensor):
if targets.shape[0] == 0:
out = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0] # image index
_, counts = i.unique(return_counts=True)
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
out[j, :n] = targets[matches, 1:]
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
return out
def bbox_decode(self, anchor_points, pred_dist):
if self.use_dfl:
b, a, c = pred_dist.shape # batch, anchors, channels
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
return dist2bbox(pred_dist, anchor_points, xywh=False)
def __call__(self, preds, batch):
loss = torch.zeros(4, device=self.device) # box, cls, dfl
@ -163,10 +124,10 @@ class SegLoss:
# else:
# loss[1] += proto.sum() * 0
loss[0] *= 7.5 # box gain
loss[1] *= 7.5 / batch_size # seg gain
loss[2] *= 0.5 # cls gain
loss[3] *= 1.5 # dfl gain
loss[0] *= self.hyp.box # box gain
loss[1] *= self.hyp.box / batch_size # seg gain
loss[2] *= self.hyp.cls # cls gain
loss[3] *= self.hyp.dfl # dfl gain
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)

Loading…
Cancel
Save