@ -234,14 +234,14 @@ We love your input! YOLOv5 and YOLOv8 would not be possible without help from ou
## <divalign="center">License</div>
## <divalign="center">License</div>
YOLOv8 is available under two different licenses:
Ultralytics offers two licensing options to accommodate diverse use cases:
- **AGPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for details.
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of AGPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
## <divalign="center">Contact</div>
## <divalign="center">Contact</div>
For YOLOv8 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://discord.gg/2wNGbc6g9X) community for questions and discussions!
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://discord.gg/2wNGbc6g9X) community for questions and discussions!
The Ultralytics library provides a powerful settings management system to enable fine-grained control over your experiments. By making use of the `SettingsManager` housed within the `ultralytics.utils` module, users can readily access and alter their settings. These are stored in a YAML file and can be viewed or modified either directly within the Python environment or via the Command-Line Interface (CLI).
### Inspecting Settings
To gain insight into the current configuration of your settings, you can view them directly:
!!! example "View settings"
=== "Python"
You can use Python to view your settings. Start by importing the `settings` object from the `ultralytics` module. Print and return settings using the following commands:
```python
from ultralytics import settings
# View all settings
print(settings)
# Return a specific setting
value = settings['runs_dir']
```
=== "CLI"
Alternatively, the command-line interface allows you to check your settings with a simple command:
```bash
yolo settings
```
### Modifying Settings
Ultralytics allows users to easily modify their settings. Changes can be performed in the following ways:
!!! example "Update settings"
=== "Python"
Within the Python environment, call the `update` method on the `settings` object to change your settings:
The table below provides an overview of the settings available for adjustment within Ultralytics. Each setting is outlined along with an example value, the data type, and a brief description.
| Name | Example Value | Data Type | Description |
description: Explore Ultralytics YOLO docs to understand task-specific models like DetectionModel, PoseModel, RTDETRDetectionModel and more. Plus, learn about ensemble, model loading.
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` beteen arguments.
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.