ultralytics 8.0.141
create new SettingsManager (#3790)
This commit is contained in:
@ -63,4 +63,4 @@ To get started with the Ultralytics Android App, follow these steps:
|
||||
|
||||
6. Explore the app's settings to adjust the detection threshold, enable or disable specific object classes, and more.
|
||||
|
||||
With the Ultralytics Android App, you now have the power of real-time object detection using YOLO models right at your fingertips. Enjoy exploring the app's features and optimizing its settings to suit your specific use cases.
|
||||
With the Ultralytics Android App, you now have the power of real-time object detection using YOLO models right at your fingertips. Enjoy exploring the app's features and optimizing its settings to suit your specific use cases.
|
||||
|
@ -49,4 +49,4 @@ Welcome to the Ultralytics HUB App! We are excited to introduce this powerful mo
|
||||
- [**iOS**](./ios.md): Learn about YOLO CoreML models accelerated on Apple's Neural Engine for iPhones and iPads.
|
||||
- [**Android**](./android.md): Explore TFLite acceleration on Android mobile devices.
|
||||
|
||||
Get started today by downloading the Ultralytics HUB App on your mobile device and unlock the potential of YOLOv5 and YOLOv8 models on-the-go. Don't forget to check out our comprehensive [HUB Docs](../) for more information on training, deploying, and using your custom models with the Ultralytics HUB platform.
|
||||
Get started today by downloading the Ultralytics HUB App on your mobile device and unlock the potential of YOLOv5 and YOLOv8 models on-the-go. Don't forget to check out our comprehensive [HUB Docs](../) for more information on training, deploying, and using your custom models with the Ultralytics HUB platform.
|
||||
|
@ -53,4 +53,4 @@ To get started with the Ultralytics iOS App, follow these steps:
|
||||
|
||||
6. Explore the app's settings to adjust the detection threshold, enable or disable specific object classes, and more.
|
||||
|
||||
With the Ultralytics iOS App, you can now leverage the power of YOLO models for real-time object detection on your iPhone or iPad, powered by the Apple Neural Engine and optimized with FP16 or INT8 quantization.
|
||||
With the Ultralytics iOS App, you can now leverage the power of YOLO models for real-time object detection on your iPhone or iPad, powered by the Apple Neural Engine and optimized with FP16 or INT8 quantization.
|
||||
|
@ -156,4 +156,4 @@ Navigate to the Dataset page of the dataset you want to delete, open the dataset
|
||||
|
||||
If you change your mind, you can restore the dataset from the [Trash](https://hub.ultralytics.com/trash) page.
|
||||
|
||||

|
||||

|
||||
|
@ -39,4 +39,4 @@ We hope that the resources here will help you get the most out of HUB. Please br
|
||||
- [**Ultralytics HUB App**](./app/index.md). Learn about the Ultralytics App for iOS and Android, which allows you to run models directly on your mobile device.
|
||||
* [**iOS**](./app/ios.md). Learn about YOLO CoreML models accelerated on Apple's Neural Engine on iPhones and iPads.
|
||||
* [**Android**](./app/android.md). Explore TFLite acceleration on mobile devices.
|
||||
- [**Inference API**](./inference_api.md). Understand how to use the Inference API for running your trained models in the cloud to generate predictions.
|
||||
- [**Inference API**](./inference_api.md). Understand how to use the Inference API for running your trained models in the cloud to generate predictions.
|
||||
|
@ -111,7 +111,7 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca
|
||||
=== "Local"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
@ -119,12 +119,12 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca
|
||||
results = model('image.jpg')
|
||||
|
||||
# Print image.jpg results in JSON format
|
||||
print(results[0].tojson())
|
||||
print(results[0].tojson())
|
||||
```
|
||||
|
||||
=== "CLI API"
|
||||
```bash
|
||||
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
|
||||
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
|
||||
-H "x-api-key: API_KEY" \
|
||||
-F "image=@/path/to/image.jpg" \
|
||||
-F "size=640" \
|
||||
@ -135,21 +135,21 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca
|
||||
=== "Python API"
|
||||
```python
|
||||
import requests
|
||||
|
||||
|
||||
# API URL, use actual MODEL_ID
|
||||
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
|
||||
|
||||
|
||||
# Headers, use actual API_KEY
|
||||
headers = {"x-api-key": "API_KEY"}
|
||||
|
||||
|
||||
# Inference arguments (optional)
|
||||
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
|
||||
|
||||
|
||||
# Load image and send request
|
||||
with open("path/to/image.jpg", "rb") as image_file:
|
||||
files = {"image": image_file}
|
||||
response = requests.post(url, headers=headers, files=files, data=data)
|
||||
|
||||
|
||||
print(response.json())
|
||||
```
|
||||
|
||||
@ -205,7 +205,7 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr
|
||||
=== "Local"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load model
|
||||
model = YOLO('yolov8n-seg.pt')
|
||||
|
||||
@ -213,12 +213,12 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr
|
||||
results = model('image.jpg')
|
||||
|
||||
# Print image.jpg results in JSON format
|
||||
print(results[0].tojson())
|
||||
print(results[0].tojson())
|
||||
```
|
||||
|
||||
=== "CLI API"
|
||||
```bash
|
||||
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
|
||||
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
|
||||
-H "x-api-key: API_KEY" \
|
||||
-F "image=@/path/to/image.jpg" \
|
||||
-F "size=640" \
|
||||
@ -229,21 +229,21 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr
|
||||
=== "Python API"
|
||||
```python
|
||||
import requests
|
||||
|
||||
|
||||
# API URL, use actual MODEL_ID
|
||||
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
|
||||
|
||||
|
||||
# Headers, use actual API_KEY
|
||||
headers = {"x-api-key": "API_KEY"}
|
||||
|
||||
|
||||
# Inference arguments (optional)
|
||||
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
|
||||
|
||||
|
||||
# Load image and send request
|
||||
with open("path/to/image.jpg", "rb") as image_file:
|
||||
files = {"image": image_file}
|
||||
response = requests.post(url, headers=headers, files=files, data=data)
|
||||
|
||||
|
||||
print(response.json())
|
||||
```
|
||||
|
||||
@ -342,7 +342,7 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca
|
||||
=== "Local"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load model
|
||||
model = YOLO('yolov8n-seg.pt')
|
||||
|
||||
@ -350,12 +350,12 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca
|
||||
results = model('image.jpg')
|
||||
|
||||
# Print image.jpg results in JSON format
|
||||
print(results[0].tojson())
|
||||
print(results[0].tojson())
|
||||
```
|
||||
|
||||
=== "CLI API"
|
||||
```bash
|
||||
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
|
||||
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
|
||||
-H "x-api-key: API_KEY" \
|
||||
-F "image=@/path/to/image.jpg" \
|
||||
-F "size=640" \
|
||||
@ -366,21 +366,21 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca
|
||||
=== "Python API"
|
||||
```python
|
||||
import requests
|
||||
|
||||
|
||||
# API URL, use actual MODEL_ID
|
||||
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"
|
||||
|
||||
|
||||
# Headers, use actual API_KEY
|
||||
headers = {"x-api-key": "API_KEY"}
|
||||
|
||||
|
||||
# Inference arguments (optional)
|
||||
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
|
||||
|
||||
|
||||
# Load image and send request
|
||||
with open("path/to/image.jpg", "rb") as image_file:
|
||||
files = {"image": image_file}
|
||||
response = requests.post(url, headers=headers, files=files, data=data)
|
||||
|
||||
|
||||
print(response.json())
|
||||
```
|
||||
|
||||
@ -455,4 +455,4 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
```
|
||||
|
@ -210,4 +210,4 @@ Navigate to the Model page of the model you want to delete, open the model actio
|
||||
|
||||
If you change your mind, you can restore the model from the [Trash](https://hub.ultralytics.com/trash) page.
|
||||
|
||||

|
||||

|
||||
|
@ -166,4 +166,4 @@ Navigate to the Project page of the project where the model you want to mode is
|
||||
|
||||
Select the project you want to transfer the model to and click **Save**.
|
||||
|
||||

|
||||

|
||||
|
Reference in New Issue
Block a user