Add Ultralytics ViT Docs (#3230)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>single_channel
parent
bd0f7ecf6f
commit
1e5702a5b5
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about the RTDETR model in Ultralytics YOLO Docs and how it can be used for object detection with improved speed and accuracy. Find implementation details and more.
|
||||
keywords: RTDETR, Ultralytics, YOLO, object detection, speed, accuracy, implementation details
|
||||
---
|
||||
|
||||
## RTDETR
|
||||
---
|
||||
### ::: ultralytics.vit.rtdetr.model.RTDETR
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about the RTDETRPredictor class and how to use it for vision transformer object detection with Ultralytics YOLO.
|
||||
keywords: RTDETRPredictor, object detection, vision transformer, Ultralytics YOLO
|
||||
---
|
||||
|
||||
## RTDETRPredictor
|
||||
---
|
||||
### ::: ultralytics.vit.rtdetr.predict.RTDETRPredictor
|
||||
<br><br>
|
@ -0,0 +1,14 @@
|
||||
---
|
||||
description: Learn how to use RTDETRTrainer from Ultralytics YOLO Docs. Train object detection models with the latest VIT-based RTDETR system.
|
||||
keywords: RTDETRTrainer, Ultralytics YOLO Docs, object detection, VIT-based RTDETR system, train
|
||||
---
|
||||
|
||||
## RTDETRTrainer
|
||||
---
|
||||
### ::: ultralytics.vit.rtdetr.train.RTDETRTrainer
|
||||
<br><br>
|
||||
|
||||
## train
|
||||
---
|
||||
### ::: ultralytics.vit.rtdetr.train.train
|
||||
<br><br>
|
@ -0,0 +1,14 @@
|
||||
---
|
||||
description: Documentation for RTDETRValidator data validation tool in Ultralytics RTDETRDataset.
|
||||
keywords: RTDETRDataset, RTDETRValidator, data validation, documentation
|
||||
---
|
||||
|
||||
## RTDETRDataset
|
||||
---
|
||||
### ::: ultralytics.vit.rtdetr.val.RTDETRDataset
|
||||
<br><br>
|
||||
|
||||
## RTDETRValidator
|
||||
---
|
||||
### ::: ultralytics.vit.rtdetr.val.RTDETRValidator
|
||||
<br><br>
|
@ -0,0 +1,89 @@
|
||||
---
|
||||
description: Explore and learn about functions in Ultralytics MaskData library such as mask_to_rle_pytorch, area_from_rle, generate_crop_boxes, and more.
|
||||
keywords: Ultralytics, SAM, MaskData, mask_to_rle_pytorch, area_from_rle, generate_crop_boxes, batched_mask_to_box, documentation
|
||||
---
|
||||
|
||||
## MaskData
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.MaskData
|
||||
<br><br>
|
||||
|
||||
## is_box_near_crop_edge
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.is_box_near_crop_edge
|
||||
<br><br>
|
||||
|
||||
## box_xyxy_to_xywh
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.box_xyxy_to_xywh
|
||||
<br><br>
|
||||
|
||||
## batch_iterator
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.batch_iterator
|
||||
<br><br>
|
||||
|
||||
## mask_to_rle_pytorch
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.mask_to_rle_pytorch
|
||||
<br><br>
|
||||
|
||||
## rle_to_mask
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.rle_to_mask
|
||||
<br><br>
|
||||
|
||||
## area_from_rle
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.area_from_rle
|
||||
<br><br>
|
||||
|
||||
## calculate_stability_score
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.calculate_stability_score
|
||||
<br><br>
|
||||
|
||||
## build_point_grid
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.build_point_grid
|
||||
<br><br>
|
||||
|
||||
## build_all_layer_point_grids
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.build_all_layer_point_grids
|
||||
<br><br>
|
||||
|
||||
## generate_crop_boxes
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.generate_crop_boxes
|
||||
<br><br>
|
||||
|
||||
## uncrop_boxes_xyxy
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.uncrop_boxes_xyxy
|
||||
<br><br>
|
||||
|
||||
## uncrop_points
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.uncrop_points
|
||||
<br><br>
|
||||
|
||||
## uncrop_masks
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.uncrop_masks
|
||||
<br><br>
|
||||
|
||||
## remove_small_regions
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.remove_small_regions
|
||||
<br><br>
|
||||
|
||||
## coco_encode_rle
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.coco_encode_rle
|
||||
<br><br>
|
||||
|
||||
## batched_mask_to_box
|
||||
---
|
||||
### ::: ultralytics.vit.sam.amg.batched_mask_to_box
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn how to use the ResizeLongestSide module in Ultralytics YOLO for automatic image resizing. Resize your images with ease.
|
||||
keywords: ResizeLongestSide, Ultralytics YOLO, automatic image resizing, image resizing
|
||||
---
|
||||
|
||||
## ResizeLongestSide
|
||||
---
|
||||
### ::: ultralytics.vit.sam.autosize.ResizeLongestSide
|
||||
<br><br>
|
@ -0,0 +1,29 @@
|
||||
---
|
||||
description: Learn how to build SAM and VIT models with Ultralytics YOLO Docs. Enhance your understanding of computer vision models today!.
|
||||
keywords: SAM, VIT, computer vision models, build SAM models, build VIT models, Ultralytics YOLO Docs
|
||||
---
|
||||
|
||||
## build_sam_vit_h
|
||||
---
|
||||
### ::: ultralytics.vit.sam.build.build_sam_vit_h
|
||||
<br><br>
|
||||
|
||||
## build_sam_vit_l
|
||||
---
|
||||
### ::: ultralytics.vit.sam.build.build_sam_vit_l
|
||||
<br><br>
|
||||
|
||||
## build_sam_vit_b
|
||||
---
|
||||
### ::: ultralytics.vit.sam.build.build_sam_vit_b
|
||||
<br><br>
|
||||
|
||||
## _build_sam
|
||||
---
|
||||
### ::: ultralytics.vit.sam.build._build_sam
|
||||
<br><br>
|
||||
|
||||
## build_sam
|
||||
---
|
||||
### ::: ultralytics.vit.sam.build.build_sam
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about the Ultralytics VIT SAM model for object detection and how it can help streamline your computer vision workflow. Check out the documentation for implementation details and examples.
|
||||
keywords: Ultralytics, VIT, SAM, object detection, computer vision, deep learning, implementation, examples
|
||||
---
|
||||
|
||||
## SAM
|
||||
---
|
||||
### ::: ultralytics.vit.sam.model.SAM
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
## MaskDecoder
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.decoders.MaskDecoder
|
||||
<br><br>
|
||||
|
||||
## MLP
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.decoders.MLP
|
||||
<br><br>
|
@ -0,0 +1,54 @@
|
||||
---
|
||||
description: Learn about Ultralytics ViT encoder, position embeddings, attention, window partition, and more in our comprehensive documentation.
|
||||
keywords: Ultralytics YOLO, ViT Encoder, Position Embeddings, Attention, Window Partition, Rel Pos Encoding
|
||||
---
|
||||
|
||||
## ImageEncoderViT
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.ImageEncoderViT
|
||||
<br><br>
|
||||
|
||||
## PromptEncoder
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.PromptEncoder
|
||||
<br><br>
|
||||
|
||||
## PositionEmbeddingRandom
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.PositionEmbeddingRandom
|
||||
<br><br>
|
||||
|
||||
## Block
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.Block
|
||||
<br><br>
|
||||
|
||||
## Attention
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.Attention
|
||||
<br><br>
|
||||
|
||||
## PatchEmbed
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.PatchEmbed
|
||||
<br><br>
|
||||
|
||||
## window_partition
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.window_partition
|
||||
<br><br>
|
||||
|
||||
## window_unpartition
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.window_unpartition
|
||||
<br><br>
|
||||
|
||||
## get_rel_pos
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.get_rel_pos
|
||||
<br><br>
|
||||
|
||||
## add_decomposed_rel_pos
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.encoders.add_decomposed_rel_pos
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about the SamAutomaticMaskGenerator module in Ultralytics YOLO, an automatic mask generator for image segmentation.
|
||||
keywords: SamAutomaticMaskGenerator, Ultralytics YOLO, automatic mask generator, image segmentation
|
||||
---
|
||||
|
||||
## SamAutomaticMaskGenerator
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.mask_generator.SamAutomaticMaskGenerator
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Learn about PromptPredictor - a module in Ultralytics VIT SAM that predicts image captions based on prompts. Get started today!.
|
||||
keywords: PromptPredictor, Ultralytics, YOLO, VIT SAM, image captioning, deep learning, computer vision
|
||||
---
|
||||
|
||||
## PromptPredictor
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.prompt_predictor.PromptPredictor
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: Explore the Sam module in Ultralytics VIT, a PyTorch-based vision library, and learn how to improve your image classification and segmentation tasks.
|
||||
keywords: Ultralytics VIT, Sam module, PyTorch vision library, image classification, segmentation tasks
|
||||
---
|
||||
|
||||
## Sam
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.sam.Sam
|
||||
<br><br>
|
@ -0,0 +1,19 @@
|
||||
---
|
||||
description: Explore the Attention and TwoWayTransformer modules in Ultralytics YOLO documentation. Learn how to integrate them in your project efficiently.
|
||||
keywords: Ultralytics YOLO, Attention module, TwoWayTransformer module, Object Detection, Deep Learning
|
||||
---
|
||||
|
||||
## TwoWayTransformer
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.transformer.TwoWayTransformer
|
||||
<br><br>
|
||||
|
||||
## TwoWayAttentionBlock
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.transformer.TwoWayAttentionBlock
|
||||
<br><br>
|
||||
|
||||
## Attention
|
||||
---
|
||||
### ::: ultralytics.vit.sam.modules.transformer.Attention
|
||||
<br><br>
|
@ -0,0 +1,9 @@
|
||||
---
|
||||
description: The VIT SAM Predictor from Ultralytics provides object detection capabilities for YOLO. Learn how to use it and speed up your object detection models.
|
||||
keywords: Ultralytics, VIT SAM Predictor, object detection, YOLO
|
||||
---
|
||||
|
||||
## Predictor
|
||||
---
|
||||
### ::: ultralytics.vit.sam.predict.Predictor
|
||||
<br><br>
|
@ -0,0 +1,14 @@
|
||||
---
|
||||
description: DETRLoss is a method for optimizing detection of objects in images. Learn how to use it in RTDETRDetectionLoss at Ultralytics Docs.
|
||||
keywords: DETRLoss, RTDETRDetectionLoss, Ultralytics, object detection, image classification, computer vision
|
||||
---
|
||||
|
||||
## DETRLoss
|
||||
---
|
||||
### ::: ultralytics.vit.utils.loss.DETRLoss
|
||||
<br><br>
|
||||
|
||||
## RTDETRDetectionLoss
|
||||
---
|
||||
### ::: ultralytics.vit.utils.loss.RTDETRDetectionLoss
|
||||
<br><br>
|
@ -0,0 +1,19 @@
|
||||
---
|
||||
description: Learn about HungarianMatcher and inverse_sigmoid functions in the Ultralytics YOLO Docs. Improve your object detection skills today!.
|
||||
keywords: Ultralytics, YOLO, object detection, HungarianMatcher, inverse_sigmoid
|
||||
---
|
||||
|
||||
## HungarianMatcher
|
||||
---
|
||||
### ::: ultralytics.vit.utils.ops.HungarianMatcher
|
||||
<br><br>
|
||||
|
||||
## get_cdn_group
|
||||
---
|
||||
### ::: ultralytics.vit.utils.ops.get_cdn_group
|
||||
<br><br>
|
||||
|
||||
## inverse_sigmoid
|
||||
---
|
||||
### ::: ultralytics.vit.utils.ops.inverse_sigmoid
|
||||
<br><br>
|
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .build import build_sam # noqa
|
||||
from .model import SAM # noqa
|
||||
from .modules.prompt_predictor import PromptPredictor # noqa
|
||||
|
@ -0,0 +1 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
@ -0,0 +1 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
Loading…
Reference in new issue