Update datasets/classify/index.md Docs (#3244)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Wang Xin 2 years ago committed by GitHub
parent e9205974ff
commit 0632c88722
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -97,9 +97,9 @@ In this example, the `train` directory contains subdirectories for each class in
```bash
# Start training from a pretrained *.pt model
yolo detect train data=path/to/data model=yolov8n-seg.pt epochs=100 imgsz=640
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640
```
## Supported Datasets
TODO
TODO

@ -12,7 +12,7 @@ keywords: pose estimation, datasets, supported formats, YAML file, object class
** Label Format **
The dataset format used for training YOLO segmentation models is as follows:
The dataset format used for training YOLO pose models is as follows:
1. One text file per image: Each image in the dataset has a corresponding text file with the same name as the image file and the ".txt" extension.
2. One row per object: Each row in the text file corresponds to one object instance in the image.
@ -52,7 +52,6 @@ names: [<class-1>, <class-2>, ..., <class-n>]
# Keypoints
kpt_shape: [num_kpts, dim] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [n1, n2 ... , n(num_kpts)]
```
The `train` and `val` fields specify the paths to the directories containing the training and validation images, respectively.
@ -65,7 +64,7 @@ NOTE: Either `nc` or `names` must be defined. Defining both are not mandatory
Alternatively, you can directly define class names like this:
```
```yaml
names:
0: person
1: bicycle
@ -118,8 +117,8 @@ TODO
### COCO dataset format to YOLO format
```
```python
from ultralytics.yolo.data.converter import convert_coco
convert_coco(labels_dir='../coco/annotations/', use_keypoints=True)
```
```

Loading…
Cancel
Save