You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
4.7 KiB
159 lines
4.7 KiB
2 years ago
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
2 years ago
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
from functools import partial
|
||
|
|
||
|
import torch
|
||
|
|
||
2 years ago
|
from ultralytics.utils.downloads import attempt_download_asset
|
||
|
|
||
2 years ago
|
from .modules.decoders import MaskDecoder
|
||
|
from .modules.encoders import ImageEncoderViT, PromptEncoder
|
||
|
from .modules.sam import Sam
|
||
2 years ago
|
from .modules.tiny_encoder import TinyViT
|
||
2 years ago
|
from .modules.transformer import TwoWayTransformer
|
||
|
|
||
|
|
||
|
def build_sam_vit_h(checkpoint=None):
|
||
|
"""Build and return a Segment Anything Model (SAM) h-size model."""
|
||
|
return _build_sam(
|
||
|
encoder_embed_dim=1280,
|
||
|
encoder_depth=32,
|
||
|
encoder_num_heads=16,
|
||
|
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||
|
checkpoint=checkpoint,
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_sam_vit_l(checkpoint=None):
|
||
|
"""Build and return a Segment Anything Model (SAM) l-size model."""
|
||
|
return _build_sam(
|
||
|
encoder_embed_dim=1024,
|
||
|
encoder_depth=24,
|
||
|
encoder_num_heads=16,
|
||
|
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||
|
checkpoint=checkpoint,
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_sam_vit_b(checkpoint=None):
|
||
|
"""Build and return a Segment Anything Model (SAM) b-size model."""
|
||
|
return _build_sam(
|
||
|
encoder_embed_dim=768,
|
||
|
encoder_depth=12,
|
||
|
encoder_num_heads=12,
|
||
|
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||
|
checkpoint=checkpoint,
|
||
|
)
|
||
|
|
||
|
|
||
2 years ago
|
def build_mobile_sam(checkpoint=None):
|
||
|
"""Build and return Mobile Segment Anything Model (Mobile-SAM)."""
|
||
|
return _build_sam(
|
||
|
encoder_embed_dim=[64, 128, 160, 320],
|
||
|
encoder_depth=[2, 2, 6, 2],
|
||
|
encoder_num_heads=[2, 4, 5, 10],
|
||
|
encoder_global_attn_indexes=None,
|
||
|
mobile_sam=True,
|
||
|
checkpoint=checkpoint,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _build_sam(encoder_embed_dim,
|
||
|
encoder_depth,
|
||
|
encoder_num_heads,
|
||
|
encoder_global_attn_indexes,
|
||
|
checkpoint=None,
|
||
|
mobile_sam=False):
|
||
2 years ago
|
"""Builds the selected SAM model architecture."""
|
||
|
prompt_embed_dim = 256
|
||
|
image_size = 1024
|
||
|
vit_patch_size = 16
|
||
|
image_embedding_size = image_size // vit_patch_size
|
||
2 years ago
|
image_encoder = (TinyViT(
|
||
|
img_size=1024,
|
||
|
in_chans=3,
|
||
|
num_classes=1000,
|
||
|
embed_dims=encoder_embed_dim,
|
||
|
depths=encoder_depth,
|
||
|
num_heads=encoder_num_heads,
|
||
|
window_sizes=[7, 7, 14, 7],
|
||
|
mlp_ratio=4.0,
|
||
|
drop_rate=0.0,
|
||
|
drop_path_rate=0.0,
|
||
|
use_checkpoint=False,
|
||
|
mbconv_expand_ratio=4.0,
|
||
|
local_conv_size=3,
|
||
|
layer_lr_decay=0.8,
|
||
|
) if mobile_sam else ImageEncoderViT(
|
||
|
depth=encoder_depth,
|
||
|
embed_dim=encoder_embed_dim,
|
||
|
img_size=image_size,
|
||
|
mlp_ratio=4,
|
||
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||
|
num_heads=encoder_num_heads,
|
||
|
patch_size=vit_patch_size,
|
||
|
qkv_bias=True,
|
||
|
use_rel_pos=True,
|
||
|
global_attn_indexes=encoder_global_attn_indexes,
|
||
|
window_size=14,
|
||
|
out_chans=prompt_embed_dim,
|
||
|
))
|
||
2 years ago
|
sam = Sam(
|
||
2 years ago
|
image_encoder=image_encoder,
|
||
2 years ago
|
prompt_encoder=PromptEncoder(
|
||
|
embed_dim=prompt_embed_dim,
|
||
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||
|
input_image_size=(image_size, image_size),
|
||
|
mask_in_chans=16,
|
||
|
),
|
||
|
mask_decoder=MaskDecoder(
|
||
|
num_multimask_outputs=3,
|
||
|
transformer=TwoWayTransformer(
|
||
|
depth=2,
|
||
|
embedding_dim=prompt_embed_dim,
|
||
|
mlp_dim=2048,
|
||
|
num_heads=8,
|
||
|
),
|
||
|
transformer_dim=prompt_embed_dim,
|
||
|
iou_head_depth=3,
|
||
|
iou_head_hidden_dim=256,
|
||
|
),
|
||
|
pixel_mean=[123.675, 116.28, 103.53],
|
||
|
pixel_std=[58.395, 57.12, 57.375],
|
||
|
)
|
||
|
if checkpoint is not None:
|
||
2 years ago
|
checkpoint = attempt_download_asset(checkpoint)
|
||
2 years ago
|
with open(checkpoint, 'rb') as f:
|
||
|
state_dict = torch.load(f)
|
||
|
sam.load_state_dict(state_dict)
|
||
2 years ago
|
sam.eval()
|
||
|
# sam.load_state_dict(torch.load(checkpoint), strict=True)
|
||
|
# sam.eval()
|
||
2 years ago
|
return sam
|
||
|
|
||
|
|
||
|
sam_model_map = {
|
||
|
'sam_h.pt': build_sam_vit_h,
|
||
|
'sam_l.pt': build_sam_vit_l,
|
||
2 years ago
|
'sam_b.pt': build_sam_vit_b,
|
||
|
'mobile_sam.pt': build_mobile_sam, }
|
||
2 years ago
|
|
||
|
|
||
|
def build_sam(ckpt='sam_b.pt'):
|
||
|
"""Build a SAM model specified by ckpt."""
|
||
2 years ago
|
model_builder = None
|
||
|
for k in sam_model_map.keys():
|
||
|
if ckpt.endswith(k):
|
||
|
model_builder = sam_model_map.get(k)
|
||
|
|
||
2 years ago
|
if not model_builder:
|
||
|
raise FileNotFoundError(f'{ckpt} is not a supported sam model. Available models are: \n {sam_model_map.keys()}')
|
||
|
|
||
|
return model_builder(ckpt)
|