You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

460 lines
19 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import glob
import inspect
import math
import os
import platform
import re
import shutil
import subprocess
import time
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import pkg_resources as pkg
import psutil
import requests
import torch
from matplotlib import font_manager
from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ONLINE, ROOT, USER_CONFIG_DIR, TryExcept, clean_url, colorstr,
downloads, emojis, is_colab, is_docker, is_jupyter, is_kaggle, is_online,
is_pip_package, url2file)
def is_ascii(s) -> bool:
"""
Check if a string is composed of only ASCII characters.
Args:
s (str): String to be checked.
Returns:
bool: True if the string is composed only of ASCII characters, False otherwise.
"""
# Convert list, tuple, None, etc. to string
s = str(s)
# Check if the string is composed of only ASCII characters
return all(ord(c) < 128 for c in s)
def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
"""
Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
Args:
imgsz (int | cList[int]): Image size.
stride (int): Stride value.
min_dim (int): Minimum number of dimensions.
floor (int): Minimum allowed value for image size.
Returns:
(List[int]): Updated image size.
"""
# Convert stride to integer if it is a tensor
stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)
# Convert image size to list if it is an integer
if isinstance(imgsz, int):
imgsz = [imgsz]
elif isinstance(imgsz, (list, tuple)):
imgsz = list(imgsz)
else:
raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")
# Apply max_dim
if len(imgsz) > max_dim:
msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
if max_dim != 1:
raise ValueError(f'imgsz={imgsz} is not a valid image size. {msg}')
LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
imgsz = [max(imgsz)]
# Make image size a multiple of the stride
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
# Print warning message if image size was updated
if sz != imgsz:
LOGGER.warning(f'WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}')
# Add missing dimensions if necessary
sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz
return sz
def check_version(current: str = '0.0.0',
minimum: str = '0.0.0',
name: str = 'version ',
pinned: bool = False,
hard: bool = False,
verbose: bool = False) -> bool:
"""
Check current version against the required minimum version.
Args:
current (str): Current version.
minimum (str): Required minimum version.
name (str): Name to be used in warning message.
pinned (bool): If True, versions must match exactly. If False, minimum version must be satisfied.
hard (bool): If True, raise an AssertionError if the minimum version is not met.
verbose (bool): If True, print warning message if minimum version is not met.
Returns:
(bool): True if minimum version is met, False otherwise.
"""
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
result = (current == minimum) if pinned else (current >= minimum) # bool
warning_message = f'WARNING ⚠️ {name}{minimum} is required by YOLOv8, but {name}{current} is currently installed'
if hard:
assert result, emojis(warning_message) # assert min requirements met
if verbose and not result:
LOGGER.warning(warning_message)
return result
def check_latest_pypi_version(package_name='ultralytics'):
"""
Returns the latest version of a PyPI package without downloading or installing it.
Parameters:
package_name (str): The name of the package to find the latest version for.
Returns:
(str): The latest version of the package.
"""
with contextlib.suppress(Exception):
requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning
response = requests.get(f'https://pypi.org/pypi/{package_name}/json', timeout=3)
if response.status_code == 200:
return response.json()['info']['version']
return None
def check_pip_update_available():
"""
Checks if a new version of the ultralytics package is available on PyPI.
Returns:
(bool): True if an update is available, False otherwise.
"""
if ONLINE and is_pip_package():
with contextlib.suppress(Exception):
from ultralytics import __version__
latest = check_latest_pypi_version()
if pkg.parse_version(__version__) < pkg.parse_version(latest): # update is available
LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 '
f"Update with 'pip install -U ultralytics'")
return True
return False
def check_font(font='Arial.ttf'):
"""
Find font locally or download to user's configuration directory if it does not already exist.
Args:
font (str): Path or name of font.
Returns:
file (Path): Resolved font file path.
"""
name = Path(font).name
# Check USER_CONFIG_DIR
file = USER_CONFIG_DIR / name
if file.exists():
return file
# Check system fonts
matches = [s for s in font_manager.findSystemFonts() if font in s]
if any(matches):
return matches[0]
# Download to USER_CONFIG_DIR if missing
url = f'https://ultralytics.com/assets/{name}'
if downloads.is_url(url):
downloads.safe_download(url=url, file=file)
return file
def check_python(minimum: str = '3.7.0') -> bool:
"""
Check current python version against the required minimum version.
Args:
minimum (str): Required minimum version of python.
Returns:
None
"""
return check_version(platform.python_version(), minimum, name='Python ', hard=True)
@TryExcept()
def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=(), install=True, cmds=''):
"""
Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed.
Args:
requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a
string, or a list of package requirements as strings.
exclude (Tuple[str]): Tuple of package names to exclude from checking.
install (bool): If True, attempt to auto-update packages that don't meet requirements.
cmds (str): Additional commands to pass to the pip install command when auto-updating.
"""
prefix = colorstr('red', 'bold', 'requirements:')
check_python() # check python version
check_torchvision() # check torch-torchvision compatibility
file = None
if isinstance(requirements, Path): # requirements.txt file
file = requirements.resolve()
assert file.exists(), f'{prefix} {file} not found, check failed.'
with file.open() as f:
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
elif isinstance(requirements, str):
requirements = [requirements]
s = '' # console string
n = 0 # number of packages updates
for r in requirements:
rmin = r.split('/')[-1].replace('.git', '') # replace git+https://org/repo.git -> 'repo'
try:
pkg.require(rmin)
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
try: # attempt to import (slower but more accurate)
import importlib
importlib.import_module(next(pkg.parse_requirements(rmin)).name)
except ImportError:
s += f'"{r}" '
n += 1
if s:
if install and AUTOINSTALL: # check environment variable
pkgs = file or requirements # missing packages
LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {pkgs} not found, attempting AutoUpdate...")
try:
t = time.time()
assert is_online(), 'AutoUpdate skipped (offline)'
LOGGER.info(subprocess.check_output(f'pip install --no-cache {s} {cmds}', shell=True).decode())
dt = time.time() - t
LOGGER.info(
f"{prefix} AutoUpdate success ✅ {dt:.1f}s, installed {n} package{'s' * (n > 1)}: {pkgs}\n"
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n")
except Exception as e:
LOGGER.warning(f'{prefix}{e}')
return False
else:
return False
return True
def check_torchvision():
"""
Checks the installed versions of PyTorch and Torchvision to ensure they're compatible.
This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according
to the provided compatibility table based on https://github.com/pytorch/vision#installation. The
compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible
Torchvision versions.
"""
import torchvision
# Compatibility table
compatibility_table = {'2.0': ['0.15'], '1.13': ['0.14'], '1.12': ['0.13']}
# Extract only the major and minor versions
v_torch = '.'.join(torch.__version__.split('+')[0].split('.')[:2])
v_torchvision = '.'.join(torchvision.__version__.split('+')[0].split('.')[:2])
if v_torch in compatibility_table:
compatible_versions = compatibility_table[v_torch]
if all(pkg.parse_version(v_torchvision) != pkg.parse_version(v) for v in compatible_versions):
print(f'WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n'
f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or "
"'pip install -U torch torchvision' to update both.\n"
'For a full compatibility table see https://github.com/pytorch/vision#installation')
def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
"""Check file(s) for acceptable suffix."""
if file and suffix:
if isinstance(suffix, str):
suffix = (suffix, )
for f in file if isinstance(file, (list, tuple)) else [file]:
s = Path(f).suffix.lower().strip() # file suffix
if len(s):
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}'
def check_yolov5u_filename(file: str, verbose: bool = True):
"""Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
if ('yolov3' in file or 'yolov5' in file) and 'u' not in file:
original_file = file
file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file) # i.e. yolov5n.pt -> yolov5nu.pt
file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file) # i.e. yolov5n6.pt -> yolov5n6u.pt
file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
if file != original_file and verbose:
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
return file
def check_file(file, suffix='', download=True, hard=True):
"""Search/download file (if necessary) and return path."""
check_suffix(file, suffix) # optional
file = str(file).strip() # convert to string and strip spaces
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
if not file or ('://' not in file and Path(file).exists()): # exists ('://' check required in Windows Python<3.10)
return file
elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download
url = file # warning: Pathlib turns :// -> :/
file = url2file(file) # '%2F' to '/', split https://url.com/file.txt?auth
if Path(file).exists():
LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists
else:
downloads.safe_download(url=url, file=file, unzip=False)
return file
else: # search
files = []
for d in 'models', 'datasets', 'tracker/cfg', 'yolo/cfg': # search directories
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
if not files and hard:
raise FileNotFoundError(f"'{file}' does not exist")
elif len(files) > 1 and hard:
raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
return files[0] if len(files) else [] # return file
def check_yaml(file, suffix=('.yaml', '.yml'), hard=True):
"""Search/download YAML file (if necessary) and return path, checking suffix."""
return check_file(file, suffix, hard=hard)
def check_imshow(warn=False):
"""Check if environment supports image displays."""
try:
assert not any((is_colab(), is_kaggle(), is_docker()))
cv2.imshow('test', np.zeros((1, 1, 3)))
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)
return True
except Exception as e:
if warn:
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
return False
def check_yolo(verbose=True, device=''):
"""Return a human-readable YOLO software and hardware summary."""
from ultralytics.yolo.utils.torch_utils import select_device
if is_jupyter():
if check_requirements('wandb', install=False):
os.system('pip uninstall -y wandb') # uninstall wandb: unwanted account creation prompt with infinite hang
if is_colab():
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
if verbose:
# System info
gib = 1 << 30 # bytes per GiB
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage('/')
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
with contextlib.suppress(Exception): # clear display if ipython is installed
from IPython import display
display.clear_output()
else:
s = ''
select_device(device=device, newline=False)
LOGGER.info(f'Setup complete ✅ {s}')
def check_amp(model):
"""
This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model.
If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP
results, so AMP will be disabled during training.
Args:
model (nn.Module): A YOLOv8 model instance.
Returns:
(bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False.
Raises:
AssertionError: If the AMP checks fail, indicating anomalies with the AMP functionality on the system.
"""
device = next(model.parameters()).device # get model device
if device.type in ('cpu', 'mps'):
return False # AMP only used on CUDA devices
def amp_allclose(m, im):
"""All close FP32 vs AMP results."""
a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference
with torch.cuda.amp.autocast(True):
b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference
del m
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
f = ROOT / 'assets/bus.jpg' # image to check
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3))
prefix = colorstr('AMP: ')
LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...')
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
try:
from ultralytics import YOLO
assert amp_allclose(YOLO('yolov8n.pt'), im)
LOGGER.info(f'{prefix}checks passed ✅')
except ConnectionError:
LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}')
except (AttributeError, ModuleNotFoundError):
LOGGER.warning(
f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}'
)
except AssertionError:
LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to '
f'NaN losses or zero-mAP results, so AMP will be disabled during training.')
return False
return True
def git_describe(path=ROOT): # path must be a directory
"""Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe."""
try:
assert (Path(path) / '.git').is_dir()
return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
except AssertionError:
return ''
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
"""Print function arguments (optional args dict)."""
def strip_auth(v):
"""Clean longer Ultralytics HUB URLs by stripping potential authentication information."""
return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v
x = inspect.currentframe().f_back # previous frame
file, _, func, _, _ = inspect.getframeinfo(x)
if args is None: # get args automatically
args, _, _, frm = inspect.getargvalues(x)
args = {k: v for k, v in frm.items() if k in args}
try:
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
except ValueError:
file = Path(file).stem
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items()))