|
|
|
# YOLO 🚀 by Ultralytics, GPL-3.0 license
|
|
|
|
# Default training settings and hyperparameters for medium-augmentation COCO training
|
|
|
|
|
|
|
|
# Task and Mode
|
|
|
|
task: "classify" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case
|
|
|
|
mode: "train" # choice=['train', 'val', 'infer']
|
|
|
|
|
|
|
|
# Train settings -------------------------------------------------------------------------------------------------------
|
|
|
|
model: null # i.e. yolov5s.pt, yolo.yaml
|
|
|
|
data: null # i.e. coco128.yaml
|
|
|
|
epochs: 300
|
|
|
|
batch_size: 16
|
|
|
|
img_size: 640
|
|
|
|
nosave: False
|
|
|
|
cache: False # True/ram, disk or False
|
|
|
|
device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
|
|
workers: 8
|
|
|
|
project: 'runs'
|
|
|
|
name: 'exp'
|
|
|
|
exist_ok: False
|
|
|
|
pretrained: False
|
|
|
|
optimizer: 'SGD' # choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
|
|
|
verbose: False
|
|
|
|
seed: 0
|
|
|
|
deterministic: True
|
|
|
|
local_rank: -1
|
|
|
|
single_cls: False # train multi-class data as single-class
|
|
|
|
image_weights: False # use weighted image selection for training
|
|
|
|
shuffle: True
|
|
|
|
rect: False # support rectangular training
|
|
|
|
cos_lr: False # Use cosine LR scheduler
|
|
|
|
overlap_mask: True # Segmentation masks overlap
|
|
|
|
mask_ratio: 4 # Segmentation mask downsample ratio
|
|
|
|
|
|
|
|
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
|
|
|
save_json: False
|
|
|
|
save_hybrid: False
|
|
|
|
conf_thres: 0.001
|
|
|
|
iou_thres: 0.6
|
|
|
|
max_det: 300
|
|
|
|
half: True
|
|
|
|
plots: False
|
|
|
|
save_txt: False
|
|
|
|
|
|
|
|
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
|
|
|
lr0: 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
|
|
|
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
|
|
|
momentum: 0.937 # SGD momentum/Adam beta1
|
|
|
|
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
|
|
|
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
|
|
|
warmup_momentum: 0.8 # warmup initial momentum
|
|
|
|
warmup_bias_lr: 0.1 # warmup initial bias lr
|
|
|
|
box: 0.05 # box loss gain
|
|
|
|
cls: 0.5 # cls loss gain
|
|
|
|
cls_pw: 1.0 # cls BCELoss positive_weight
|
|
|
|
obj: 1.0 # obj loss gain (scale with pixels)
|
|
|
|
obj_pw: 1.0 # obj BCELoss positive_weight
|
|
|
|
iou_t: 0.20 # IoU training threshold
|
|
|
|
anchor_t: 4.0 # anchor-multiple threshold
|
|
|
|
# anchors: 3 # anchors per output layer (0 to ignore)
|
|
|
|
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
|
|
|
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
|
|
|
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
|
|
|
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
|
|
|
degrees: 0.0 # image rotation (+/- deg)
|
|
|
|
translate: 0.1 # image translation (+/- fraction)
|
|
|
|
scale: 0.5 # image scale (+/- gain)
|
|
|
|
shear: 0.0 # image shear (+/- deg)
|
|
|
|
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
|
|
|
flipud: 0.0 # image flip up-down (probability)
|
|
|
|
fliplr: 0.5 # image flip left-right (probability)
|
|
|
|
mosaic: 1.0 # image mosaic (probability)
|
|
|
|
mixup: 0.0 # image mixup (probability)
|
|
|
|
copy_paste: 0.0 # segment copy-paste (probability)
|
|
|
|
label_smoothing: 0.0
|
|
|
|
nbs: 64 # nominal batch size
|
|
|
|
# anchors: 3
|
|
|
|
|
|
|
|
# Hydra configs --------------------------------------------------------------------------------------------------------
|
|
|
|
hydra:
|
|
|
|
output_subdir: null # disable hydra directory creation
|
|
|
|
run:
|
|
|
|
dir: .
|