|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import contextlib
|
|
|
|
import glob
|
|
|
|
import inspect
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import platform
|
|
|
|
import re
|
|
|
|
import shutil
|
|
|
|
import subprocess
|
|
|
|
import time
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import pkg_resources as pkg
|
|
|
|
import psutil
|
|
|
|
import requests
|
|
|
|
import torch
|
|
|
|
from matplotlib import font_manager
|
|
|
|
|
|
|
|
from ultralytics.utils import (AUTOINSTALL, LOGGER, ONLINE, ROOT, USER_CONFIG_DIR, ThreadingLocked, TryExcept,
|
|
|
|
clean_url, colorstr, downloads, emojis, is_colab, is_docker, is_jupyter, is_kaggle,
|
|
|
|
is_online, is_pip_package, url2file)
|
|
|
|
|
|
|
|
|
|
|
|
def is_ascii(s) -> bool:
|
|
|
|
"""
|
|
|
|
Check if a string is composed of only ASCII characters.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
s (str): String to be checked.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bool: True if the string is composed only of ASCII characters, False otherwise.
|
|
|
|
"""
|
|
|
|
# Convert list, tuple, None, etc. to string
|
|
|
|
s = str(s)
|
|
|
|
|
|
|
|
# Check if the string is composed of only ASCII characters
|
|
|
|
return all(ord(c) < 128 for c in s)
|
|
|
|
|
|
|
|
|
|
|
|
def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
|
|
|
|
"""
|
|
|
|
Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
|
|
|
|
stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
imgsz (int | cList[int]): Image size.
|
|
|
|
stride (int): Stride value.
|
|
|
|
min_dim (int): Minimum number of dimensions.
|
|
|
|
max_dim (int): Maximum number of dimensions.
|
|
|
|
floor (int): Minimum allowed value for image size.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(List[int]): Updated image size.
|
|
|
|
"""
|
|
|
|
# Convert stride to integer if it is a tensor
|
|
|
|
stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)
|
|
|
|
|
|
|
|
# Convert image size to list if it is an integer
|
|
|
|
if isinstance(imgsz, int):
|
|
|
|
imgsz = [imgsz]
|
|
|
|
elif isinstance(imgsz, (list, tuple)):
|
|
|
|
imgsz = list(imgsz)
|
|
|
|
else:
|
|
|
|
raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
|
|
|
|
f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")
|
|
|
|
|
|
|
|
# Apply max_dim
|
|
|
|
if len(imgsz) > max_dim:
|
|
|
|
msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \
|
|
|
|
"or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
|
|
|
|
if max_dim != 1:
|
|
|
|
raise ValueError(f'imgsz={imgsz} is not a valid image size. {msg}')
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
|
|
|
|
imgsz = [max(imgsz)]
|
|
|
|
# Make image size a multiple of the stride
|
|
|
|
sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]
|
|
|
|
|
|
|
|
# Print warning message if image size was updated
|
|
|
|
if sz != imgsz:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}')
|
|
|
|
|
|
|
|
# Add missing dimensions if necessary
|
|
|
|
sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz
|
|
|
|
|
|
|
|
return sz
|
|
|
|
|
|
|
|
|
|
|
|
def check_version(current: str = '0.0.0',
|
|
|
|
required: str = '0.0.0',
|
|
|
|
name: str = 'version ',
|
|
|
|
hard: bool = False,
|
|
|
|
verbose: bool = False) -> bool:
|
|
|
|
"""
|
|
|
|
Check current version against the required version or range.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
current (str): Current version.
|
|
|
|
required (str): Required version or range (in pip-style format).
|
|
|
|
name (str): Name to be used in warning message.
|
|
|
|
hard (bool): If True, raise an AssertionError if the requirement is not met.
|
|
|
|
verbose (bool): If True, print warning message if requirement is not met.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(bool): True if requirement is met, False otherwise.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
# check if current version is exactly 22.04
|
|
|
|
check_version(current='22.04', required='==22.04')
|
|
|
|
|
|
|
|
# check if current version is greater than or equal to 22.04
|
|
|
|
check_version(current='22.10', required='22.04') # assumes '>=' inequality if none passed
|
|
|
|
|
|
|
|
# check if current version is less than or equal to 22.04
|
|
|
|
check_version(current='22.04', required='<=22.04')
|
|
|
|
|
|
|
|
# check if current version is between 20.04 (inclusive) and 22.04 (exclusive)
|
|
|
|
check_version(current='21.10', required='>20.04,<22.04')
|
|
|
|
"""
|
|
|
|
current = pkg.parse_version(current)
|
|
|
|
constraints = re.findall(r'([<>!=]{1,2}\s*\d+\.\d+)', required) or [f'>={required}']
|
|
|
|
|
|
|
|
result = True
|
|
|
|
for constraint in constraints:
|
|
|
|
op, version = re.match(r'([<>!=]{1,2})\s*(\d+\.\d+)', constraint).groups()
|
|
|
|
version = pkg.parse_version(version)
|
|
|
|
if op == '==' and current != version:
|
|
|
|
result = False
|
|
|
|
elif op == '!=' and current == version:
|
|
|
|
result = False
|
|
|
|
elif op == '>=' and not (current >= version):
|
|
|
|
result = False
|
|
|
|
elif op == '<=' and not (current <= version):
|
|
|
|
result = False
|
|
|
|
elif op == '>' and not (current > version):
|
|
|
|
result = False
|
|
|
|
elif op == '<' and not (current < version):
|
|
|
|
result = False
|
|
|
|
if not result:
|
|
|
|
warning_message = f'WARNING ⚠️ {name}{required} is required, but {name}{current} is currently installed'
|
|
|
|
if hard:
|
|
|
|
raise ModuleNotFoundError(emojis(warning_message)) # assert version requirements met
|
|
|
|
if verbose:
|
|
|
|
LOGGER.warning(warning_message)
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def check_latest_pypi_version(package_name='ultralytics'):
|
|
|
|
"""
|
|
|
|
Returns the latest version of a PyPI package without downloading or installing it.
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
package_name (str): The name of the package to find the latest version for.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(str): The latest version of the package.
|
|
|
|
"""
|
|
|
|
with contextlib.suppress(Exception):
|
|
|
|
requests.packages.urllib3.disable_warnings() # Disable the InsecureRequestWarning
|
|
|
|
response = requests.get(f'https://pypi.org/pypi/{package_name}/json', timeout=3)
|
|
|
|
if response.status_code == 200:
|
|
|
|
return response.json()['info']['version']
|
|
|
|
|
|
|
|
|
|
|
|
def check_pip_update_available():
|
|
|
|
"""
|
|
|
|
Checks if a new version of the ultralytics package is available on PyPI.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(bool): True if an update is available, False otherwise.
|
|
|
|
"""
|
|
|
|
if ONLINE and is_pip_package():
|
|
|
|
with contextlib.suppress(Exception):
|
|
|
|
from ultralytics import __version__
|
|
|
|
latest = check_latest_pypi_version()
|
|
|
|
if pkg.parse_version(__version__) < pkg.parse_version(latest): # update is available
|
|
|
|
LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 '
|
|
|
|
f"Update with 'pip install -U ultralytics'")
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
@ThreadingLocked()
|
|
|
|
def check_font(font='Arial.ttf'):
|
|
|
|
"""
|
|
|
|
Find font locally or download to user's configuration directory if it does not already exist.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
font (str): Path or name of font.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
file (Path): Resolved font file path.
|
|
|
|
"""
|
|
|
|
name = Path(font).name
|
|
|
|
|
|
|
|
# Check USER_CONFIG_DIR
|
|
|
|
file = USER_CONFIG_DIR / name
|
|
|
|
if file.exists():
|
|
|
|
return file
|
|
|
|
|
|
|
|
# Check system fonts
|
|
|
|
matches = [s for s in font_manager.findSystemFonts() if font in s]
|
|
|
|
if any(matches):
|
|
|
|
return matches[0]
|
|
|
|
|
|
|
|
# Download to USER_CONFIG_DIR if missing
|
|
|
|
url = f'https://ultralytics.com/assets/{name}'
|
|
|
|
if downloads.is_url(url):
|
|
|
|
downloads.safe_download(url=url, file=file)
|
|
|
|
return file
|
|
|
|
|
|
|
|
|
|
|
|
def check_python(minimum: str = '3.8.0') -> bool:
|
|
|
|
"""
|
|
|
|
Check current python version against the required minimum version.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
minimum (str): Required minimum version of python.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
return check_version(platform.python_version(), minimum, name='Python ', hard=True)
|
|
|
|
|
|
|
|
|
|
|
|
@TryExcept()
|
|
|
|
def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=(), install=True, cmds=''):
|
|
|
|
"""
|
|
|
|
Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a
|
|
|
|
string, or a list of package requirements as strings.
|
|
|
|
exclude (Tuple[str]): Tuple of package names to exclude from checking.
|
|
|
|
install (bool): If True, attempt to auto-update packages that don't meet requirements.
|
|
|
|
cmds (str): Additional commands to pass to the pip install command when auto-updating.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
```python
|
|
|
|
from ultralytics.utils.checks import check_requirements
|
|
|
|
|
|
|
|
# Check a requirements.txt file
|
|
|
|
check_requirements('path/to/requirements.txt')
|
|
|
|
|
|
|
|
# Check a single package
|
|
|
|
check_requirements('ultralytics>=8.0.0')
|
|
|
|
|
|
|
|
# Check multiple packages
|
|
|
|
check_requirements(['numpy', 'ultralytics>=8.0.0'])
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
prefix = colorstr('red', 'bold', 'requirements:')
|
|
|
|
check_python() # check python version
|
|
|
|
check_torchvision() # check torch-torchvision compatibility
|
|
|
|
if isinstance(requirements, Path): # requirements.txt file
|
|
|
|
file = requirements.resolve()
|
|
|
|
assert file.exists(), f'{prefix} {file} not found, check failed.'
|
|
|
|
with file.open() as f:
|
|
|
|
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
|
|
|
elif isinstance(requirements, str):
|
|
|
|
requirements = [requirements]
|
|
|
|
|
|
|
|
pkgs = []
|
|
|
|
for r in requirements:
|
|
|
|
r_stripped = r.split('/')[-1].replace('.git', '') # replace git+https://org/repo.git -> 'repo'
|
|
|
|
try:
|
|
|
|
pkg.require(r_stripped) # exception if requirements not met
|
|
|
|
except pkg.DistributionNotFound:
|
|
|
|
try: # attempt to import (slower but more accurate)
|
|
|
|
import importlib
|
|
|
|
importlib.import_module(next(pkg.parse_requirements(r_stripped)).name)
|
|
|
|
except ImportError:
|
|
|
|
pkgs.append(r)
|
|
|
|
except pkg.VersionConflict:
|
|
|
|
pkgs.append(r)
|
|
|
|
|
|
|
|
s = ' '.join(f'"{x}"' for x in pkgs) # console string
|
|
|
|
if s:
|
|
|
|
if install and AUTOINSTALL: # check environment variable
|
|
|
|
n = len(pkgs) # number of packages updates
|
|
|
|
LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {pkgs} not found, attempting AutoUpdate...")
|
|
|
|
try:
|
|
|
|
t = time.time()
|
|
|
|
assert is_online(), 'AutoUpdate skipped (offline)'
|
|
|
|
LOGGER.info(subprocess.check_output(f'pip install --no-cache {s} {cmds}', shell=True).decode())
|
|
|
|
dt = time.time() - t
|
|
|
|
LOGGER.info(
|
|
|
|
f"{prefix} AutoUpdate success ✅ {dt:.1f}s, installed {n} package{'s' * (n > 1)}: {pkgs}\n"
|
|
|
|
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n")
|
|
|
|
except Exception as e:
|
|
|
|
LOGGER.warning(f'{prefix} ❌ {e}')
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def check_torchvision():
|
|
|
|
"""
|
|
|
|
Checks the installed versions of PyTorch and Torchvision to ensure they're compatible.
|
|
|
|
|
|
|
|
This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according
|
|
|
|
to the provided compatibility table based on https://github.com/pytorch/vision#installation. The
|
|
|
|
compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible
|
|
|
|
Torchvision versions.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import torchvision
|
|
|
|
|
|
|
|
# Compatibility table
|
|
|
|
compatibility_table = {'2.0': ['0.15'], '1.13': ['0.14'], '1.12': ['0.13']}
|
|
|
|
|
|
|
|
# Extract only the major and minor versions
|
|
|
|
v_torch = '.'.join(torch.__version__.split('+')[0].split('.')[:2])
|
|
|
|
v_torchvision = '.'.join(torchvision.__version__.split('+')[0].split('.')[:2])
|
|
|
|
|
|
|
|
if v_torch in compatibility_table:
|
|
|
|
compatible_versions = compatibility_table[v_torch]
|
|
|
|
if all(pkg.parse_version(v_torchvision) != pkg.parse_version(v) for v in compatible_versions):
|
|
|
|
print(f'WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n'
|
|
|
|
f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or "
|
|
|
|
"'pip install -U torch torchvision' to update both.\n"
|
|
|
|
'For a full compatibility table see https://github.com/pytorch/vision#installation')
|
|
|
|
|
|
|
|
|
|
|
|
def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
|
|
|
|
"""Check file(s) for acceptable suffix."""
|
|
|
|
if file and suffix:
|
|
|
|
if isinstance(suffix, str):
|
|
|
|
suffix = (suffix, )
|
|
|
|
for f in file if isinstance(file, (list, tuple)) else [file]:
|
|
|
|
s = Path(f).suffix.lower().strip() # file suffix
|
|
|
|
if len(s):
|
|
|
|
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}'
|
|
|
|
|
|
|
|
|
|
|
|
def check_yolov5u_filename(file: str, verbose: bool = True):
|
|
|
|
"""Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
|
|
|
|
if 'yolov3' in file or 'yolov5' in file:
|
|
|
|
if 'u.yaml' in file:
|
|
|
|
file = file.replace('u.yaml', '.yaml') # i.e. yolov5nu.yaml -> yolov5n.yaml
|
|
|
|
elif '.pt' in file and 'u' not in file:
|
|
|
|
original_file = file
|
|
|
|
file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file) # i.e. yolov5n.pt -> yolov5nu.pt
|
|
|
|
file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file) # i.e. yolov5n6.pt -> yolov5n6u.pt
|
|
|
|
file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
|
|
|
|
if file != original_file and verbose:
|
|
|
|
LOGGER.info(
|
|
|
|
f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
|
|
|
f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
|
|
|
|
f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
|
|
|
|
return file
|
|
|
|
|
|
|
|
|
|
|
|
def check_file(file, suffix='', download=True, hard=True):
|
|
|
|
"""Search/download file (if necessary) and return path."""
|
|
|
|
check_suffix(file, suffix) # optional
|
|
|
|
file = str(file).strip() # convert to string and strip spaces
|
|
|
|
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
|
|
|
|
if not file or ('://' not in file and Path(file).exists()): # exists ('://' check required in Windows Python<3.10)
|
|
|
|
return file
|
|
|
|
elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')): # download
|
|
|
|
url = file # warning: Pathlib turns :// -> :/
|
|
|
|
file = url2file(file) # '%2F' to '/', split https://url.com/file.txt?auth
|
|
|
|
if Path(file).exists():
|
|
|
|
LOGGER.info(f'Found {clean_url(url)} locally at {file}') # file already exists
|
|
|
|
else:
|
|
|
|
downloads.safe_download(url=url, file=file, unzip=False)
|
|
|
|
return file
|
|
|
|
else: # search
|
|
|
|
files = glob.glob(str(ROOT / 'cfg' / '**' / file), recursive=True) # find file
|
|
|
|
if not files and hard:
|
|
|
|
raise FileNotFoundError(f"'{file}' does not exist")
|
|
|
|
elif len(files) > 1 and hard:
|
|
|
|
raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
|
|
|
|
return files[0] if len(files) else [] # return file
|
|
|
|
|
|
|
|
|
|
|
|
def check_yaml(file, suffix=('.yaml', '.yml'), hard=True):
|
|
|
|
"""Search/download YAML file (if necessary) and return path, checking suffix."""
|
|
|
|
return check_file(file, suffix, hard=hard)
|
|
|
|
|
|
|
|
|
|
|
|
def check_imshow(warn=False):
|
|
|
|
"""Check if environment supports image displays."""
|
|
|
|
try:
|
|
|
|
assert not any((is_colab(), is_kaggle(), is_docker()))
|
|
|
|
cv2.imshow('test', np.zeros((1, 1, 3)))
|
|
|
|
cv2.waitKey(1)
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
cv2.waitKey(1)
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
|
|
if warn:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def check_yolo(verbose=True, device=''):
|
|
|
|
"""Return a human-readable YOLO software and hardware summary."""
|
|
|
|
from ultralytics.utils.torch_utils import select_device
|
|
|
|
|
|
|
|
if is_jupyter():
|
|
|
|
if check_requirements('wandb', install=False):
|
|
|
|
os.system('pip uninstall -y wandb') # uninstall wandb: unwanted account creation prompt with infinite hang
|
|
|
|
if is_colab():
|
|
|
|
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
# System info
|
|
|
|
gib = 1 << 30 # bytes per GiB
|
|
|
|
ram = psutil.virtual_memory().total
|
|
|
|
total, used, free = shutil.disk_usage('/')
|
|
|
|
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
|
|
|
|
with contextlib.suppress(Exception): # clear display if ipython is installed
|
|
|
|
from IPython import display
|
|
|
|
display.clear_output()
|
|
|
|
else:
|
|
|
|
s = ''
|
|
|
|
|
|
|
|
select_device(device=device, newline=False)
|
|
|
|
LOGGER.info(f'Setup complete ✅ {s}')
|
|
|
|
|
|
|
|
|
|
|
|
def check_amp(model):
|
|
|
|
"""
|
|
|
|
This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model.
|
|
|
|
If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP
|
|
|
|
results, so AMP will be disabled during training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (nn.Module): A YOLOv8 model instance.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
from ultralytics.utils.checks import check_amp
|
|
|
|
|
|
|
|
model = YOLO('yolov8n.pt').model.cuda()
|
|
|
|
check_amp(model)
|
|
|
|
```
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False.
|
|
|
|
"""
|
|
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
if device.type in ('cpu', 'mps'):
|
|
|
|
return False # AMP only used on CUDA devices
|
|
|
|
|
|
|
|
def amp_allclose(m, im):
|
|
|
|
"""All close FP32 vs AMP results."""
|
|
|
|
a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference
|
|
|
|
with torch.cuda.amp.autocast(True):
|
|
|
|
b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference
|
|
|
|
del m
|
|
|
|
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
|
|
|
|
|
|
|
|
f = ROOT / 'assets/bus.jpg' # image to check
|
|
|
|
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3))
|
|
|
|
prefix = colorstr('AMP: ')
|
|
|
|
LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...')
|
|
|
|
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
|
|
|
|
try:
|
|
|
|
from ultralytics import YOLO
|
|
|
|
assert amp_allclose(YOLO('yolov8n.pt'), im)
|
|
|
|
LOGGER.info(f'{prefix}checks passed ✅')
|
|
|
|
except ConnectionError:
|
|
|
|
LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}')
|
|
|
|
except (AttributeError, ModuleNotFoundError):
|
|
|
|
LOGGER.warning(
|
|
|
|
f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}'
|
|
|
|
)
|
|
|
|
except AssertionError:
|
|
|
|
LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to '
|
|
|
|
f'NaN losses or zero-mAP results, so AMP will be disabled during training.')
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def git_describe(path=ROOT): # path must be a directory
|
|
|
|
"""Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe."""
|
|
|
|
try:
|
|
|
|
assert (Path(path) / '.git').is_dir()
|
|
|
|
return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
|
|
|
except AssertionError:
|
|
|
|
return ''
|
|
|
|
|
|
|
|
|
|
|
|
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
|
|
|
"""Print function arguments (optional args dict)."""
|
|
|
|
|
|
|
|
def strip_auth(v):
|
|
|
|
"""Clean longer Ultralytics HUB URLs by stripping potential authentication information."""
|
|
|
|
return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v
|
|
|
|
|
|
|
|
x = inspect.currentframe().f_back # previous frame
|
|
|
|
file, _, func, _, _ = inspect.getframeinfo(x)
|
|
|
|
if args is None: # get args automatically
|
|
|
|
args, _, _, frm = inspect.getargvalues(x)
|
|
|
|
args = {k: v for k, v in frm.items() if k in args}
|
|
|
|
try:
|
|
|
|
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
|
|
|
|
except ValueError:
|
|
|
|
file = Path(file).stem
|
|
|
|
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
|
|
|
|
LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items()))
|