You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
2.1 KiB
61 lines
2.1 KiB
2 years ago
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
2 years ago
|
from ultralytics.utils import TESTS_RUNNING
|
||
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||
2 years ago
|
|
||
|
try:
|
||
|
import wandb as wb
|
||
|
|
||
|
assert hasattr(wb, '__version__')
|
||
2 years ago
|
assert not TESTS_RUNNING # do not log pytest
|
||
2 years ago
|
except (ImportError, AssertionError):
|
||
|
wb = None
|
||
|
|
||
2 years ago
|
_processed_plots = {}
|
||
|
|
||
|
|
||
|
def _log_plots(plots, step):
|
||
|
for name, params in plots.items():
|
||
|
timestamp = params['timestamp']
|
||
|
if _processed_plots.get(name, None) != timestamp:
|
||
|
wb.run.log({name.stem: wb.Image(str(name))}, step=step)
|
||
|
_processed_plots[name] = timestamp
|
||
|
|
||
2 years ago
|
|
||
|
def on_pretrain_routine_start(trainer):
|
||
2 years ago
|
"""Initiate and start project if module is present."""
|
||
2 years ago
|
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
|
||
2 years ago
|
|
||
|
|
||
|
def on_fit_epoch_end(trainer):
|
||
2 years ago
|
"""Logs training metrics and model information at the end of an epoch."""
|
||
2 years ago
|
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||
2 years ago
|
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||
|
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
|
||
2 years ago
|
if trainer.epoch == 0:
|
||
2 years ago
|
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
|
||
2 years ago
|
|
||
|
|
||
|
def on_train_epoch_end(trainer):
|
||
2 years ago
|
"""Log metrics and save images at the end of each training epoch."""
|
||
2 years ago
|
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1)
|
||
|
wb.run.log(trainer.lr, step=trainer.epoch + 1)
|
||
|
if trainer.epoch == 1:
|
||
2 years ago
|
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||
2 years ago
|
|
||
|
|
||
|
def on_train_end(trainer):
|
||
2 years ago
|
"""Save the best model as an artifact at end of training."""
|
||
2 years ago
|
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
|
||
|
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||
2 years ago
|
art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model')
|
||
|
if trainer.best.exists():
|
||
|
art.add_file(trainer.best)
|
||
2 years ago
|
wb.run.log_artifact(art, aliases=['best'])
|
||
2 years ago
|
|
||
|
|
||
|
callbacks = {
|
||
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
||
|
'on_train_epoch_end': on_train_epoch_end,
|
||
|
'on_fit_epoch_end': on_fit_epoch_end,
|
||
|
'on_train_end': on_train_end} if wb else {}
|