You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

319 lines
13 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
import glob
import math
import os
import time
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import torch
from PIL import Image
from ultralytics.yolo.data.augment import LetterBox
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils import LOGGER, ROOT, is_colab, is_kaggle, ops
from ultralytics.yolo.utils.checks import check_requirements
class LoadStreams:
# YOLOv8 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
def __init__(self, sources='file.streams', imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.mode = 'stream'
self.imgsz = imgsz
self.stride = stride
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f'{i + 1}/{n}: {s}... '
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
import pafy # noqa
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0:
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
cap = cv2.VideoCapture(s)
if not cap.isOpened():
raise ConnectionError(f'{st}Failed to open {s}')
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
_, self.imgs[i] = cap.read() # guarantee first frame
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
self.threads[i].start()
LOGGER.info('') # newline
# check for common shapes
s = np.stack([LetterBox(imgsz, auto, stride=stride)(image=x).shape for x in self.imgs])
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
self.auto = auto and self.rect
self.transforms = transforms # optional
if not self.rect:
LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
def update(self, i, cap, stream):
# Read stream `i` frames in daemon thread
n, f = 0, self.frames[i] # frame number, frame array
while cap.isOpened() and n < f:
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if success:
self.imgs[i] = im
else:
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
self.imgs[i] = np.zeros_like(self.imgs[i])
cap.open(stream) # re-open stream if signal was lost
time.sleep(0.0) # wait time
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
im0 = self.imgs.copy()
if self.transforms:
im = np.stack([self.transforms(x) for x in im0]) # transforms
else:
im = np.stack([LetterBox(self.imgsz, self.auto, stride=self.stride)(image=x) for x in im0])
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
im = np.ascontiguousarray(im) # contiguous
return self.sources, im, im0, None, ''
def __len__(self):
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
# YOLOv8 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
def __init__(self, source, imgsz=640, stride=32, auto=True, transforms=None):
# source = [screen_number left top width height] (pixels)
check_requirements('mss')
import mss # noqa
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.imgsz = imgsz
self.stride = stride
self.transforms = transforms
self.auto = auto
self.mode = 'stream'
self.frame = 0
self.sct = mss.mss()
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor["top"] if top is None else (monitor["top"] + top)
self.left = monitor["left"] if left is None else (monitor["left"] + left)
self.width = width or monitor["width"]
self.height = height or monitor["height"]
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
def __iter__(self):
return self
def __next__(self):
# mss screen capture: get raw pixels from the screen as np array
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
if self.transforms:
im = self.transforms(im0) # transforms
else:
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
self.frame += 1
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
class LoadImages:
# YOLOv8 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
def __init__(self, path, imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
path = Path(path).read_text().rsplit()
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
p = str(Path(p).resolve())
if '*' in p:
files.extend(sorted(glob.glob(p, recursive=True))) # glob
elif os.path.isdir(p):
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
elif os.path.isfile(p):
files.append(p) # files
else:
raise FileNotFoundError(f'{p} does not exist')
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
ni, nv = len(images), len(videos)
self.imgsz = imgsz
self.stride = stride
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'image'
self.auto = auto
self.transforms = transforms # optional
self.vid_stride = vid_stride # video frame-rate stride
if any(videos):
self.orientation = None # rotation degrees
self._new_video(videos[0]) # new video
else:
self.cap = None
if self.nf == 0:
raise FileNotFoundError(f'No images or videos found in {p}. '
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}')
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
for _ in range(self.vid_stride):
self.cap.grab()
ret_val, im0 = self.cap.retrieve()
while not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
path = self.files[self.count]
self._new_video(path)
ret_val, im0 = self.cap.read()
self.frame += 1
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
else:
# Read image
self.count += 1
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f'Image Not Found {path}')
s = f'image {self.count}/{self.nf} {path}: '
if self.transforms:
im = self.transforms(im0) # transforms
else:
im = LetterBox(self.imgsz, self.auto, stride=self.stride)(image=im0)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
return path, im, im0, self.cap, s
def _new_video(self, path):
# Create a new video capture object
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
if hasattr(cv2, 'CAP_PROP_ORIENTATION_META'): # cv2<4.6.0 compatibility
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
# Disable auto-orientation due to known issues in https://github.com/ultralytics/yolov5/issues/8493
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)
def _cv2_rotate(self, im):
# Rotate a cv2 video manually
if self.orientation == 0:
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
elif self.orientation == 180:
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif self.orientation == 90:
return cv2.rotate(im, cv2.ROTATE_180)
return im
def __len__(self):
return self.nf # number of files
class LoadPilAndNumpy:
def __init__(self, im0, imgsz=640, stride=32, auto=True, transforms=None):
if not isinstance(im0, list):
im0 = [im0]
self.im0 = [self._single_check(im) for im in im0]
self.imgsz = imgsz
self.stride = stride
self.auto = auto
self.transforms = transforms
self.mode = 'image'
# generate fake paths
self.paths = [f"image{i}.jpg" for i in range(len(self.im0))]
@staticmethod
def _single_check(im):
assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
if isinstance(im, Image.Image):
im = np.asarray(im)[:, :, ::-1]
im = np.ascontiguousarray(im) # contiguous
return im
def _single_preprocess(self, im, auto):
if self.transforms:
im = self.transforms(im) # transforms
else:
im = LetterBox(self.imgsz, auto=auto, stride=self.stride)(image=im)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
return len(self.im0)
def __next__(self):
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
auto = all(x.shape == self.im0[0].shape for x in self.im0) and self.auto
im = [self._single_preprocess(im, auto) for im in self.im0]
im = np.stack(im, 0) if len(im) > 1 else im[0][None]
self.count += 1
return self.paths, im, self.im0, None, ''
def __iter__(self):
self.count = 0
return self
if __name__ == "__main__":
img = cv2.imread(str(ROOT / "assets/bus.jpg"))
dataset = LoadPilAndNumpy(im0=img)
for d in dataset:
print(d[0])