|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
from copy import copy
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from ultralytics.data import build_dataloader, build_yolo_dataset
|
|
|
|
from ultralytics.engine.trainer import BaseTrainer
|
|
|
|
from ultralytics.models import yolo
|
|
|
|
from ultralytics.nn.tasks import DetectionModel
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK
|
|
|
|
from ultralytics.utils.plotting import plot_images, plot_labels, plot_results
|
|
|
|
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
|
|
|
|
|
|
|
|
|
|
|
|
class DetectionTrainer(BaseTrainer):
|
|
|
|
|
|
|
|
def build_dataset(self, img_path, mode='train', batch=None):
|
|
|
|
"""
|
|
|
|
Build YOLO Dataset.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img_path (str): Path to the folder containing images.
|
|
|
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
|
|
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
|
|
|
"""
|
|
|
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
|
|
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
|
|
|
"""Construct and return dataloader."""
|
|
|
|
assert mode in ['train', 'val']
|
|
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
|
|
|
dataset = self.build_dataset(dataset_path, mode, batch_size)
|
|
|
|
shuffle = mode == 'train'
|
|
|
|
if getattr(dataset, 'rect', False) and shuffle:
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
|
|
|
|
shuffle = False
|
|
|
|
workers = self.args.workers if mode == 'train' else self.args.workers * 2
|
|
|
|
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
|
|
|
|
|
|
|
|
def preprocess_batch(self, batch):
|
|
|
|
"""Preprocesses a batch of images by scaling and converting to float."""
|
|
|
|
batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def set_model_attributes(self):
|
|
|
|
"""nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)."""
|
|
|
|
# self.args.box *= 3 / nl # scale to layers
|
|
|
|
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
|
|
|
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
|
|
|
self.model.nc = self.data['nc'] # attach number of classes to model
|
|
|
|
self.model.names = self.data['names'] # attach class names to model
|
|
|
|
self.model.args = self.args # attach hyperparameters to model
|
|
|
|
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
|
|
|
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
|
|
"""Return a YOLO detection model."""
|
|
|
|
model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
|
|
|
if weights:
|
|
|
|
model.load(weights)
|
|
|
|
return model
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
"""Returns a DetectionValidator for YOLO model validation."""
|
|
|
|
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
|
|
|
|
return yolo.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
|
|
|
|
|
|
|
def label_loss_items(self, loss_items=None, prefix='train'):
|
|
|
|
"""
|
|
|
|
Returns a loss dict with labelled training loss items tensor. Not needed for classification but necessary for
|
|
|
|
segmentation & detection
|
|
|
|
"""
|
|
|
|
keys = [f'{prefix}/{x}' for x in self.loss_names]
|
|
|
|
if loss_items is not None:
|
|
|
|
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
|
|
|
|
return dict(zip(keys, loss_items))
|
|
|
|
else:
|
|
|
|
return keys
|
|
|
|
|
|
|
|
def progress_string(self):
|
|
|
|
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
|
|
|
|
return ('\n' + '%11s' *
|
|
|
|
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
|
|
|
|
|
|
|
def plot_training_samples(self, batch, ni):
|
|
|
|
"""Plots training samples with their annotations."""
|
|
|
|
plot_images(images=batch['img'],
|
|
|
|
batch_idx=batch['batch_idx'],
|
|
|
|
cls=batch['cls'].squeeze(-1),
|
|
|
|
bboxes=batch['bboxes'],
|
|
|
|
paths=batch['im_file'],
|
|
|
|
fname=self.save_dir / f'train_batch{ni}.jpg',
|
|
|
|
on_plot=self.on_plot)
|
|
|
|
|
|
|
|
def plot_metrics(self):
|
|
|
|
"""Plots metrics from a CSV file."""
|
|
|
|
plot_results(file=self.csv, on_plot=self.on_plot) # save results.png
|
|
|
|
|
|
|
|
def plot_training_labels(self):
|
|
|
|
"""Create a labeled training plot of the YOLO model."""
|
|
|
|
boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0)
|
|
|
|
cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0)
|
|
|
|
plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot)
|
|
|
|
|
|
|
|
|
|
|
|
def train(cfg=DEFAULT_CFG, use_python=False):
|
|
|
|
"""Train and optimize YOLO model given training data and device."""
|
|
|
|
model = cfg.model or 'yolov8n.pt'
|
|
|
|
data = cfg.data or 'coco8.yaml' # or yolo.ClassificationDataset("mnist")
|
|
|
|
device = cfg.device if cfg.device is not None else ''
|
|
|
|
|
|
|
|
args = dict(model=model, data=data, device=device)
|
|
|
|
if use_python:
|
|
|
|
from ultralytics import YOLO
|
|
|
|
YOLO(model).train(**args)
|
|
|
|
else:
|
|
|
|
trainer = DetectionTrainer(overrides=args)
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
train()
|