You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

353 lines
15 KiB

import math
import os
import platform
import random
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
import numpy as np
import thop
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
import ultralytics
from ultralytics.yolo.utils import DEFAULT_CONFIG_DICT, DEFAULT_CONFIG_KEYS, LOGGER
from ultralytics.yolo.utils.checks import git_describe
from .checks import check_version
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
@contextmanager
def torch_distributed_zero_first(local_rank: int):
# Decorator to make all processes in distributed training wait for each local_master to do something
initialized = torch.distributed.is_initialized() # prevent 'Default process group has not been initialized' errors
if initialized and local_rank not in {-1, 0}:
dist.barrier(device_ids=[local_rank])
yield
if initialized and local_rank == 0:
dist.barrier(device_ids=[0])
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
def decorate(fn):
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
return decorate
def DDP_model(model):
# Model DDP creation with checks
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
if check_version(torch.__version__, '1.11.0'):
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
else:
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
def select_device(device='', batch_size=0, newline=False):
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
ver = git_describe() or ultralytics.__version__ # git commit or pip package version
s = f'Ultralytics YOLO 🚀 {ver} Python-{platform.python_version()} torch-{torch.__version__} '
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
cpu = device == 'cpu'
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
if cpu or mps:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
n = len(devices) # device count
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
space = ' ' * (len(s) + 1)
for i, d in enumerate(devices):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
arg = 'cuda:0'
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
s += 'MPS\n'
arg = 'mps'
else: # revert to CPU
s += 'CPU\n'
arg = 'cpu'
if RANK == -1:
LOGGER.info(s if newline else s.rstrip())
return torch.device(arg)
def time_sync():
# PyTorch-accurate time
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def fuse_conv_and_bn(conv, bn):
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
fusedconv = nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
dilation=conv.dilation,
groups=conv.groups,
bias=True).requires_grad_(False).to(conv.weight.device)
# Prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def model_info(model, verbose=False, imgsz=640):
# Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
n_p = get_num_params(model)
n_g = get_num_gradients(model) # number gradients
if verbose:
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
flops = get_flops(model, imgsz)
fs = f', {flops:.1f} GFLOPs' if flops else ''
m = Path(getattr(model, 'yaml_file', '') or model.yaml.get('yaml_file', '')).stem.replace('yolo', 'YOLO') or 'Model'
LOGGER.info(f"{m} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def get_num_params(model):
return sum(x.numel() for x in model.parameters())
def get_num_gradients(model):
return sum(x.numel() for x in model.parameters() if x.requires_grad)
def get_flops(model, imgsz=640):
try:
model = de_parallel(model)
p = next(model.parameters())
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
return flops
except Exception:
return 0
def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
if ratio == 1.0:
return img
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def make_divisible(x, divisor):
# Returns nearest x divisible by divisor
if isinstance(divisor, torch.Tensor):
divisor = int(divisor.max()) # to int
return math.ceil(x / divisor) * divisor
def copy_attr(a, b, include=(), exclude=()):
# Copy attributes from b to a, options to only include [...] and to exclude [...]
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
def intersect_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
def is_parallel(model):
# Returns True if model is of type DP or DDP
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def de_parallel(model):
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model
def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def init_seeds(seed=0, deterministic=False):
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.deterministic = True
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
os.environ['PYTHONHASHSEED'] = str(seed)
class ModelEMA:
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
# Create EMA
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
# Update EMA parameters
self.updates += 1
d = self.decay(self.updates)
msd = de_parallel(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point: # true for FP16 and FP32
v *= d
v += (1 - d) * msd[k].detach()
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes
copy_attr(self.ema, model, include, exclude)
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
# Strip optimizer from 'f' to finalize training, optionally save as 's'
x = torch.load(f, map_location=torch.device('cpu'))
args = {**DEFAULT_CONFIG_DICT, **x['train_args']} # combine model args with default args, preferring model args
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
x[k] = None
x['epoch'] = -1
x['model'].half() # to FP16
for p in x['model'].parameters():
p.requires_grad = False
x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # strip non-default keys
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def guess_task_from_head(head):
task = None
if head.lower() in ["classify", "classifier", "cls", "fc"]:
task = "classify"
if head.lower() in ["detect"]:
task = "detect"
if head.lower() in ["segment"]:
task = "segment"
if not task:
raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links
return task
def profile(input, ops, n=10, device=None):
""" YOLOv5 speed/memory/FLOPs profiler
Usage:
input = torch.randn(16, 3, 640, 640)
m1 = lambda x: x * torch.sigmoid(x)
m2 = nn.SiLU()
profile(input, [m1, m2], n=100) # profile over 100 iterations
"""
results = []
if not isinstance(device, torch.device):
device = select_device(device)
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}")
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, 'to') else m # device
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
except Exception:
flops = 0
try:
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float('nan')
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
print(e)
results.append(None)
torch.cuda.empty_cache()
return results