You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
3.2 KiB
71 lines
3.2 KiB
2 years ago
|
import os
|
||
|
from contextlib import contextmanager
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
|
|
||
|
from ultralytics.yolo.utils import check_version
|
||
|
|
||
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||
|
RANK = int(os.getenv('RANK', -1))
|
||
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def torch_distributed_zero_first(local_rank: int):
|
||
|
# Decorator to make all processes in distributed training wait for each local_master to do something
|
||
|
if local_rank not in [-1, 0]:
|
||
|
dist.barrier(device_ids=[local_rank])
|
||
|
yield
|
||
|
if local_rank == 0:
|
||
|
dist.barrier(device_ids=[0])
|
||
|
|
||
|
|
||
|
def DDP_model(model):
|
||
|
# Model DDP creation with checks
|
||
|
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
|
||
|
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
|
||
|
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
|
||
|
if check_version(torch.__version__, '1.11.0'):
|
||
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
|
||
|
else:
|
||
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
||
|
|
||
|
|
||
|
def select_device(device='', batch_size=0, newline=True):
|
||
|
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
||
|
# s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
|
||
|
s = f'YOLOv5 🚀 torch-{torch.__version__} '
|
||
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
||
|
cpu = device == 'cpu'
|
||
|
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
||
|
if cpu or mps:
|
||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||
|
elif device: # non-cpu device requested
|
||
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
||
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
||
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
||
|
|
||
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
||
|
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
||
|
n = len(devices) # device count
|
||
|
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
||
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||
|
space = ' ' * (len(s) + 1)
|
||
|
for i, d in enumerate(devices):
|
||
|
p = torch.cuda.get_device_properties(i)
|
||
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
||
|
arg = 'cuda:0'
|
||
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
||
|
s += 'MPS\n'
|
||
|
arg = 'mps'
|
||
|
else: # revert to CPU
|
||
|
s += 'CPU\n'
|
||
|
arg = 'cpu'
|
||
|
|
||
|
if not newline:
|
||
|
s = s.rstrip()
|
||
|
print(s)
|
||
|
return torch.device(arg)
|