|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from ultralytics import YOLO
|
|
|
|
from ultralytics.vit.sam import PromptPredictor, build_sam
|
|
|
|
from ultralytics.yolo.utils.torch_utils import select_device
|
|
|
|
|
|
|
|
|
|
|
|
def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
|
|
|
|
"""
|
|
|
|
Automatically annotates images using a YOLO object detection model and a SAM segmentation model.
|
|
|
|
Args:
|
|
|
|
data (str): Path to a folder containing images to be annotated.
|
|
|
|
det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'.
|
|
|
|
sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'.
|
|
|
|
device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available).
|
|
|
|
output_dir (str | None | optional): Directory to save the annotated results.
|
|
|
|
Defaults to a 'labels' folder in the same directory as 'data'.
|
|
|
|
"""
|
|
|
|
device = select_device(device)
|
|
|
|
det_model = YOLO(det_model)
|
|
|
|
sam_model = build_sam(sam_model)
|
|
|
|
det_model.to(device)
|
|
|
|
sam_model.to(device)
|
|
|
|
|
|
|
|
if not output_dir:
|
|
|
|
output_dir = Path(str(data)).parent / 'labels'
|
|
|
|
Path(output_dir).mkdir(exist_ok=True, parents=True)
|
|
|
|
|
|
|
|
prompt_predictor = PromptPredictor(sam_model)
|
|
|
|
det_results = det_model(data, stream=True)
|
|
|
|
|
|
|
|
for result in det_results:
|
|
|
|
boxes = result.boxes.xyxy # Boxes object for bbox outputs
|
|
|
|
class_ids = result.boxes.cls.int().tolist() # noqa
|
|
|
|
if len(class_ids):
|
|
|
|
prompt_predictor.set_image(result.orig_img)
|
|
|
|
masks, _, _ = prompt_predictor.predict_torch(
|
|
|
|
point_coords=None,
|
|
|
|
point_labels=None,
|
|
|
|
boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]),
|
|
|
|
multimask_output=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
result.update(masks=masks.squeeze(1))
|
|
|
|
segments = result.masks.xyn # noqa
|
|
|
|
|
|
|
|
with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
|
|
|
|
for i in range(len(segments)):
|
|
|
|
s = segments[i]
|
|
|
|
if len(s) == 0:
|
|
|
|
continue
|
|
|
|
segment = map(str, segments[i].reshape(-1).tolist())
|
|
|
|
f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')
|