You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
YOLOv8-16bit/README.zh-CN.md

267 lines
22 KiB

<div align="center">
<p>
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
[English](README.md) | [简体中文](README.zh-CN.md)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics) 是由 [Ultralytics](https://ultralytics.com) 开发的一个前沿的
SOTA 模型。它在以前成功的 YOLO 版本基础上引入了新的功能和改进进一步提升了其性能和灵活性。YOLOv8
基于快速、准确和易于使用的设计理念,使其成为广泛的目标检测、图像分割和图像分类任务的绝佳选择。
如果要申请企业许可证,请填写 [Ultralytics 许可](https://ultralytics.com/license)。
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">文档</div>
有关训练、测试和部署的完整文档见[YOLOv8 Docs](https://docs.ultralytics.com)。请参阅下面的快速入门示例。
<details open>
<summary>安装</summary>
Pip 安装包含所有 [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) 的
ultralytics 包,环境要求 [**Python>=3.7**](https://www.python.org/),且 [\*\*PyTorch>=1.7
\*\*](https://pytorch.org/get-started/locally/)。
```bash
pip install ultralytics
```
</details>
<details open>
<summary>使用方法</summary>
YOLOv8 可以直接在命令行界面CLI中使用 `yolo` 命令运行:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo`可以用于各种任务和模式,并接受额外的参数,例如 `imgsz=640`。参见 YOLOv8 [文档](https://docs.ultralytics.com)
中可用`yolo`[参数](https://docs.ultralytics.com/usage/cfg/)的完整列表。
```bash
yolo task=detect mode=train model=yolov8n.pt args...
classify predict yolov8n-cls.yaml args...
segment val yolov8n-seg.yaml args...
export yolov8n.pt format=onnx args...
```
YOLOv8 也可以在 Python 环境中直接使用,并接受与上面 CLI 例子中相同的[参数](https://docs.ultralytics.com/usage/cfg/)
```python
from ultralytics import YOLO
# 加载模型
model = YOLO("yolov8n.yaml") # 从头开始构建新模型
model = YOLO("yolov8n.pt") # 加载预训练模型(推荐用于训练)
# Use the model
results = model.train(data="coco128.yaml", epochs=3) # 训练模型
results = model.val() # 在验证集上评估模型性能
results = model("https://ultralytics.com/images/bus.jpg") # 预测图像
success = model.export(format="onnx") # 将模型导出为 ONNX 格式
```
[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) 会从
Ultralytics [发布页](https://github.com/ultralytics/ultralytics/releases) 自动下载。
</details>
## <div align="center">模型</div>
所有 YOLOv8 的预训练模型都可以在这里找到。目标检测和分割模型是在 COCO 数据集上预训练的,而分类模型是在 ImageNet 数据集上预训练的。
第一次使用时,[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) 会从
Ultralytics [发布页](https://github.com/ultralytics/ultralytics/releases) 自动下载。
<details open><summary>目标检测</summary>
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------- | -------------------- | ----------------------------- | ---------------------------------- | --------------- | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAP<sup>val</sup>** 结果都在 [COCO val2017](http://cocodataset.org) 数据集上,使用单模型单尺度测试得到。
<br>复现命令 `yolo val detect data=coco.yaml device=0`
- **推理速度**使用 COCO
验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
<br>复现命令 `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
</details>
<details><summary>实例分割</summary>
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | --------------- | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAP<sup>val</sup>** 结果都在 [COCO val2017](http://cocodataset.org) 数据集上,使用单模型单尺度测试得到。
<br>复现命令 `yolo val segment data=coco.yaml device=0`
- **推理速度**使用 COCO
验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
<br>复现命令 `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
</details>
<details><summary>分类</summary>
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 推理速度<br><sup>CPU ONNX<br>(ms) | 推理速度<br><sup>A100 TensorRT<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | --------------- | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- **acc** 都在 [ImageNet](https://www.image-net.org/) 数据集上,使用单模型单尺度测试得到。
<br>复现命令 `yolo val classify data=path/to/ImageNet device=0`
- **推理速度**使用 ImageNet
验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
<br>复现命令 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
</details>
<details><summary>Pose</summary>
See [Pose Docs](https://docs.ultralytics.com/tasks/) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>pose<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | - | 49.7 | - | - | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | - | 59.2 | - | - | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | - | 63.6 | - | - | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | - | 67.0 | - | - | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | - | 68.9 | - | - | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | - | 71.5 | - | - | 99.1 | 1066.4 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org)
dataset.
<br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
instance.
<br>Reproduce by `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu`
</details>
## <div align="center">模块集成</div>
<br>
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"></a>
<br>
<br>
<div align="center">
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
<a href="https://cutt.ly/yolov5-readme-clearml">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
<a href="https://bit.ly/yolov5-readme-comet2">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
<a href="https://bit.ly/yolov5-neuralmagic">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
</div>
| Roboflow | ClearML ⭐ 新 | Comet ⭐ 新 | Neural Magic ⭐ 新 |
| :--------------------------------------------------------------------------------: | :-------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------: |
| 将您的自定义数据集进行标注并直接导出到 YOLOv8 以进行训练 [Roboflow](https://roboflow.com/?ref=ultralytics) | 自动跟踪、可视化甚至远程训练 YOLOv8 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!) | 永远免费,[Comet](https://bit.ly/yolov5-readme-comet2)可让您保存 YOLOv8 模型、恢复训练以及交互式可视化和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic),运行 YOLOv8 推理的速度最高可提高6倍 |
## <div align="center">Ultralytics HUB</div>
[Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我们⭐ **新**的无代码解决方案,用于可视化数据集,训练 YOLOv8🚀
模型,并以无缝体验方式部署到现实世界。现在开始**免费**!
还可以通过下载 [Ultralytics App](https://ultralytics.com/app_install) 在你的 iOS 或 Android 设备上运行 YOLOv8 模型!
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
## <div align="center">贡献</div>
我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv8 做出贡献。请看我们的 [贡献指南](CONTRIBUTING.md)
,并填写 [调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)
向我们发送您的体验反馈。感谢我们所有的贡献者!
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
## <div align="center">License</div>
YOLOv8 在两种不同的 License 下可用:
- **GPL-3.0 License** 查看 [License](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件的详细信息。
- **企业License**:在没有 GPL-3.0 开源要求的情况下为商业产品开发提供更大的灵活性。典型用例是将 Ultralytics 软件和 AI
模型嵌入到商业产品和应用程序中。在以下位置申请企业许可证 [Ultralytics 许可](https://ultralytics.com/license) 。
## <div align="center">联系我们</div>
请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues)
或 [Ultralytics Community Forum](https://community.ultralytics.com) 以报告 YOLOv8 错误和请求功能。
<br>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
</div>