Added the option to pass filter parameters from command line and config, reworked most filters to match.

master
Rostislav Lán 2 years ago
parent e2e5810c40
commit e7fef8c6b7

@ -10,16 +10,25 @@ import cv2 as cv
# Parent class for all the filters
class filter:
'''
Parent class for all the filters
'''
def __init__(self, img):
self.img = img
class average(filter):
class convolve(filter):
''' Convolve using custom kernel,
if no kernel is given, use default 3x3 kernel for averaging'''
def __init__(self, img):
super().__init__(img)
def apply(self):
kernel = np.ones((3, 3), np.float32) / 9
def apply(self, params):
# Set default values
ksize = int(params["ksize"]) if params["ksize"] else 3
kernel = np.array(params["kernel"]) if params["kernel"] else np.ones((ksize, ksize), np.float32) / np.sqrt(ksize)
#print("with params: " + " ksize: " + str(ksize) + " kernel: \n" + str(kernel))
self.img = cv.filter2D(self.img, -1, kernel)
@ -27,88 +36,111 @@ class blur(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
self.img = cv.blur(self.img, (3, 3))
def apply(self, params):
# Set default values
if(params["anchor"]):
try:
anchor = tuple(map(int, params["anchor"].split(',')))
except AttributeError:
anchor = tuple(params["anchor"])
else:
anchor = (-1, -1)
ksize = int(params["ksize"]) if params["ksize"] else 3
#print("with params: " + " ksize: " + str(ksize) + " anchor: " + str(anchor))
self.img = cv.blur(self.img, ksize=(ksize, ksize), anchor=anchor)
class gaussian(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
self.img = cv.GaussianBlur(self.img, (3, 3), 0)
def apply(self, params):
# Set default values
ksize = int(params["ksize"]) if params["ksize"] else 3
sigmaX = float(params["sigmaX"]) if params["sigmaX"] else 0
sigmaY = float(params["sigmaY"]) if params["sigmaY"] else 0
#print("with params: " + " ksize: " + str(ksize) + " sigmaX: " + str(sigmaX) + " sigmaY: " + str(sigmaY))
self.img = cv.GaussianBlur(self.img, (ksize, ksize), sigmaX, sigmaY)
class median(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
self.img = cv.medianBlur(self.img, 1)
def apply(self, params):
# Set default values
ksize = int(params["ksize"]) if params["ksize"] else 3
#print("with params: " + " ksize: " + str(ksize))
self.img = cv.medianBlur(self.img, ksize)
class bilateral(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
self.img = cv.bilateralFilter(self.img, 1, 75, 75)
def apply(self, params):
# Set default values
d = int(params["d"]) if params["d"] else 1
sigmaColor = int(params["sigmaColor"]) if params["sigmaColor"] else 75
sigmaSpace = int(params["sigmaSpace"]) if params["sigmaSpace"] else 75
#print("with params: " + " d: " + str(d) + " sigmaColor: " + str(sigmaColor) + " sigmaSpace: " + str(sigmaSpace))
self.img = cv.bilateralFilter(self.img, d, sigmaColor, sigmaSpace)
class denoise(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
pass
#does not work
def apply(self, params):
# Set default values
h = int(params["h"]) if params["h"] else 20
tWS = int(params["templateWindowSize"]) if params["templateWindowSize"] else 7
sWS = int(params["searchWindowSize"]) if params["searchWindowSize"] else 21
#print("with params: " + " h: " + str(h) + " tWS: " + str(tWS) + " sWS: " + str(sWS))
self.img = np.uint8(self.img)
self.img = cv.fastNlMeansDenoising(
self.img, h=10, searchWindowSize=21, templateWindowSize=7)
self.img = cv.fastNlMeansDenoising(self.img, h, tWS, sWS)
class sharpen(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel)
class erode(filter):
def __init__(self, img):
super().__init__(img)
def apply(self, params):
# Set default values
kernel = np.matrix(params["kernel"]) if params["kernel"] else np.array(
[[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
def apply(self):
kernel = np.ones((3, 3), np.uint8)
self.img = cv.erode(self.img, kernel, 1)
class dilate(filter):
def __init__(self, img):
super().__init__(img)
def apply(self):
kernel = np.ones((3, 3), np.uint8)
self.img = cv.dilate(self.img, kernel, 1)
# Erosion, then dilatation
class opening(filter):
def __init__(self, img):
super().__init__(img)
#print("with params: " + " kernel: \n" + str(kernel))
self.img = cv.filter2D(self.img, ddepth=-1, kernel=kernel)
def apply(self):
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
self.img = cv.morphologyEx(self.img, cv.MORPH_CLOSE, kernel)
class morph(filter):
''' General morphological operations.
# Dilatation, then erosion
class closing(filter):
Can be used with MORPH_OPEN, MORPH_CLOSE, MORPH_DILATE, MORPH_ERODE as op.
'''
def __init__(self, img):
super().__init__(img)
def apply(self):
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
self.img = cv.morphologyEx(self.img, cv.MORPH_OPEN, kernel)
def apply(self, params):
# Set default values
kernel = np.matrix(params["kernel"]) if params["kernel"] else np.ones((3, 3), np.uint8)
iterations = int(params["iterations"]) if params["iterations"] else 1
op = getattr(cv, params["op"]) if params["op"] else cv.MORPH_OPEN
if(params["anchor"]):
try:
anchor = tuple(map(int, params["anchor"].split(',')))
except AttributeError:
anchor = tuple(params["anchor"])
else:
anchor = (-1, -1)
#print("with params: " + " kernel: \n" + str(kernel) + " anchor: " + str(anchor) + " iterations: " + str(iterations) + " op: " + str(op))
self.img = cv.morphologyEx(
self.img, op=op, kernel=kernel, anchor=anchor, iterations=iterations)

@ -23,29 +23,42 @@ class apply_filters:
def __init__(self):
# Parse arguments from command line
self.parse_arguments()
self.input_file = self.args.input_file
self.output_file = self.args.output_file
self.dpi = self.args.dpi
self.filters = self.args.filters
self.mirror = self.args.mirror if self.args.mirror else 0
self.params = {}
self.filters = []
# Parse configuration from json file
if self.args.config:
self.config_file = self.args.config[0]
self.preset_name = self.args.config[1]
self.config = json.load(open(self.config_file))
print("Config loaded")
self.parse_conf()
# If no config file given, expect filters in command line
else:
self.filters = self.args.filters
print("No config file given, using command line arguments")
i = 0
for filter in self.args.filters:
if filter.find('=') == -1:
self.filters.append(filter)
i += 1
self.params[i] = {}
else:
key, value = filter.split('=')
self.params[i][key] = value
self.parse_params(self.params[i])
self.input_file = self.args.input_file
self.output_file = self.args.output_file
self.dpi = self.args.dpi
self.mirror = self.args.mirror if self.args.mirror else 0
#read as numpy.array
self.img = plt.imread(self.input_file)
self.img = cv.imread(self.input_file, cv.IMREAD_GRAYSCALE)
self.width = self.img.shape[1]
self.height = self.img.shape[0]
print(self.width, self.height)
#print(self.width, self.height)
fig = plt.figure(figsize = (self.width, self.height),
frameon = False, dpi = self.dpi / 100) # dpi is in cm
@ -57,14 +70,38 @@ class apply_filters:
if self.mirror:
self.mirror_image()
# Apply all filters
self.apply_filter(fig, ax)
# Apply all filters and save image
self.apply_filter()
self.save_image(fig, ax)
def check_param(self, params, key):
try:
params[key] = params[key]
except KeyError:
params[key] = None
def parse_params(self, params):
possible_params = {"h", "searchWindowSize","templateWindowSize",
"ksize", "kernel", "sigmaX" , "sigmaY",
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations", "op"}
for key in possible_params:
self.check_param(params, key)
def parse_conf(self):
# Parse configuration file if given.
try:
self.filters = self.config[self.preset_name]
filter_array = self.config[self.preset_name]
for i, filter in enumerate(range(len(filter_array)), start=1):
self.filters.append(filter_array[filter]["name"])
self.params[i] = {}
for attribute, value in filter_array[filter].items():
if attribute != "name":
self.params[i][attribute] = value
self.parse_params(self.params[i])
except(KeyError):
print("Preset not found", file = sys.stderr)
@ -72,25 +109,27 @@ class apply_filters:
def parse_arguments(self):
# Parse arguments
parser = ap.ArgumentParser(prog = 'main.py', description =
'Program for processing a 2D image into 3D fingerprint.')
parser = ap.ArgumentParser(prog = 'main.py',
description = 'Program for processing a 2D image into 3D fingerprint.',
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...])')
# positional arguments
parser.add_argument("input_file", type = str, help = "Location with input file")
parser.add_argument("output_file", type = str, help = "Output file location")
parser.add_argument("dpi", type = int, help = "Scanner dpi")
parser.add_argument("input_file", type = str, help = "location with input file")
parser.add_argument("output_file", type = str, help = "output file location")
parser.add_argument("dpi", type = int, help = "scanner dpi")
# boolean switch
parser.add_argument('-m', "--mirror", help = "Mirror input image",
parser.add_argument('-m', "--mirror", help = "mirror input image",
type = bool, action = ap.BooleanOptionalAction)
# file with configuration containing presets, new preset name
# pair argument - give both or none
parser.add_argument('--config', nargs=2, metavar=('config_file', 'preset'),
help='Config file with presets, name of the preset')
parser.add_argument('-c','--config', nargs = 2, metavar = ('config_file', 'preset'),
help = 'pair: name of the config file with presets, name of the preset')
# array of unknown length, all filter names saved inside
parser.add_argument('filters', type = str, nargs = '*', help = "List of filter names")
parser.add_argument('filters', type = str, nargs = '*',
help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]")
self.args = parser.parse_args()
@ -104,10 +143,7 @@ class apply_filters:
def resize_image(self):
# open image as python image object
print("Resize image", file = sys.stderr)
self.convert_dpi()
self.img = self.img.resize((np.array(self.width, self.height)).astype(int))
@ -119,16 +155,16 @@ class apply_filters:
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
def apply_filter(self, fig, ax):
def apply_filter(self):
if len(self.filters) == 0:
# No filter given, just save the image
pass
else:
for filter_name in self.filters:
# Apply all filters
for i, filter_name in enumerate(self.filters):
filter = self.filter_factory(filter_name)
filter.apply(self)
self.save_image(fig, ax)
filter.apply(self, self.params[i+1])
def print_size(self, size):
@ -139,7 +175,7 @@ class apply_filters:
def save_image(self, fig, ax):
# Save processed image.
print("Saving image", file = sys.stderr)
ax.imshow(self.img)
ax.imshow(self.img, cmap="gray")
fig.savefig(fname=self.output_file)

Loading…
Cancel
Save