|
|
|
@ -27,6 +27,7 @@ class apply_filters:
|
|
|
|
|
self.params = {}
|
|
|
|
|
self.filters = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Parse configuration from json file
|
|
|
|
|
if self.args.config:
|
|
|
|
|
self.config_file = self.args.config[0]
|
|
|
|
@ -57,6 +58,7 @@ class apply_filters:
|
|
|
|
|
self.input_file = self.args.input_file
|
|
|
|
|
self.output_file = self.args.output_file
|
|
|
|
|
self.dpi = self.args.dpi
|
|
|
|
|
self.mirror = True if self.args.mirror else False
|
|
|
|
|
self.run()
|
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
@ -67,22 +69,22 @@ class apply_filters:
|
|
|
|
|
self.width = self.img.shape[1]
|
|
|
|
|
self.height = self.img.shape[0]
|
|
|
|
|
self.print_size(self.img.shape)
|
|
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(self.width, self.height),
|
|
|
|
|
frameon=False, dpi=self.dpi / 100) # dpi is in cm
|
|
|
|
|
print(self.dpi)
|
|
|
|
|
fig = plt.figure(figsize=(self.width/100, self.height/100),
|
|
|
|
|
frameon=False, dpi=self.dpi)
|
|
|
|
|
|
|
|
|
|
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
|
|
|
|
ax.set_axis_off()
|
|
|
|
|
fig.add_axes(ax)
|
|
|
|
|
|
|
|
|
|
if self.args.mirror:
|
|
|
|
|
if self.mirror is True:
|
|
|
|
|
self.mirror_image()
|
|
|
|
|
|
|
|
|
|
# Apply all filters and save image
|
|
|
|
|
self.apply_filter()
|
|
|
|
|
self.save_image(fig, ax)
|
|
|
|
|
plt.close()
|
|
|
|
|
if self.args.stl:
|
|
|
|
|
if self.args.stl_file:
|
|
|
|
|
self.make_lithophane()
|
|
|
|
|
|
|
|
|
|
def parse_params(self, params):
|
|
|
|
@ -125,7 +127,8 @@ class apply_filters:
|
|
|
|
|
|
|
|
|
|
parser = ap.ArgumentParser(prog='main.py',
|
|
|
|
|
description='Program for processing a 2D image into 3D fingerprint.',
|
|
|
|
|
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...])')
|
|
|
|
|
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi \
|
|
|
|
|
([-c config_file preset | --config config_file preset] | [filters ...]) [-s stl_file | --stl_file stl_file]')
|
|
|
|
|
|
|
|
|
|
# positional arguments
|
|
|
|
|
parser.add_argument("input_file", type=str,
|
|
|
|
@ -138,9 +141,8 @@ class apply_filters:
|
|
|
|
|
parser.add_argument('-m', "--mirror", help="mirror input image",
|
|
|
|
|
type=bool, action=ap.BooleanOptionalAction)
|
|
|
|
|
|
|
|
|
|
# another boolean switch argument
|
|
|
|
|
parser.add_argument('-s', '--stl', help="make stl model from processed image",
|
|
|
|
|
type=bool, action=ap.BooleanOptionalAction)
|
|
|
|
|
# another boolean switch argument, this time with value, name of the new file
|
|
|
|
|
parser.add_argument('-s', '--stl_file', type=str, nargs='?', help="make stl model from processed image", required=False)
|
|
|
|
|
|
|
|
|
|
# file with configuration containing presets, new preset name
|
|
|
|
|
# pair argument - give both or none
|
|
|
|
@ -160,12 +162,6 @@ class apply_filters:
|
|
|
|
|
print("Applying " + filter_name + " filter ", end='')
|
|
|
|
|
return getattr(flt, filter_name)
|
|
|
|
|
|
|
|
|
|
def resize_image(self):
|
|
|
|
|
|
|
|
|
|
print("Resize image", file=sys.stderr)
|
|
|
|
|
self.img = self.img.resize(
|
|
|
|
|
(np.array(self.width, self.height)).astype(int))
|
|
|
|
|
|
|
|
|
|
def mirror_image(self):
|
|
|
|
|
''' Mirror image when mirroring is needed,
|
|
|
|
|
should be used only if we want a positive model
|
|
|
|
@ -178,7 +174,7 @@ class apply_filters:
|
|
|
|
|
def apply_filter(self):
|
|
|
|
|
''' Apply filters to image.
|
|
|
|
|
|
|
|
|
|
Applies the filters one by one, if no filters were given, just save original image output.
|
|
|
|
|
Apply the filters one by one, if none were given, just save original image output.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
if len(self.filters) == 0:
|
|
|
|
@ -201,9 +197,9 @@ class apply_filters:
|
|
|
|
|
Colormap set to grayscale to avoid color mismatch.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
print("Saving image", file=sys.stderr)
|
|
|
|
|
print("Saving image to ", self.output_file, file=sys.stderr)
|
|
|
|
|
ax.imshow(self.img, cmap="gray")
|
|
|
|
|
fig.savefig(fname=self.output_file)
|
|
|
|
|
fig.savefig(fname=self.output_file, dpi='figure')
|
|
|
|
|
|
|
|
|
|
def make_lithophane(self):
|
|
|
|
|
'''After processing image, make a lithophane from it.
|
|
|
|
@ -214,28 +210,33 @@ class apply_filters:
|
|
|
|
|
print("Converting to stl format", file=sys.stderr)
|
|
|
|
|
self.make_mesh()
|
|
|
|
|
plt.show()
|
|
|
|
|
self.save_model()
|
|
|
|
|
print(f"Saving lithophane to ", self.args.stl_file, file=sys.stderr)
|
|
|
|
|
self.save_mesh()
|
|
|
|
|
|
|
|
|
|
def make_meshgrid(self):
|
|
|
|
|
''' Create numpy meshgrid.
|
|
|
|
|
Modify image values to get more usable depth values.
|
|
|
|
|
Add zero padding to image to make sides of the plate.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
if self.img.dtype == np.float32 or self.img.dtype == np.float64:
|
|
|
|
|
print("Converting to uint8", file=sys.stderr)
|
|
|
|
|
self.img = self.img * 255
|
|
|
|
|
self.img = self.img.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
# Modify image to make it more suitable depth
|
|
|
|
|
# values1 = (1 + (1 - self.img/255)/6) * 255/10 # this works
|
|
|
|
|
# values2 = (1 - (1 - self.img/255)/6) * 255/10 #
|
|
|
|
|
# TODO: i dont know how to make white surrounding be extruded
|
|
|
|
|
rescaled = (1 + (1 - self.img/255)/6) * 255 / 10 # for positive forms ?
|
|
|
|
|
if self.mirror is True:
|
|
|
|
|
rescaled = (2 - (1 - self.img/255)/6) * 255 / 10 # for negative forms
|
|
|
|
|
|
|
|
|
|
values1better = 28.05 - 0.01*self.img
|
|
|
|
|
#values2better = 22.95 - 0.01*self.img
|
|
|
|
|
# (np.around(values2[::300],3))
|
|
|
|
|
# TODO: i dont know how to make white surrounding be extruded
|
|
|
|
|
|
|
|
|
|
# Add zero padding to image
|
|
|
|
|
# TODO this better be done in the next function to keep dimensions intact
|
|
|
|
|
self.height = self.img.shape[0] + 2
|
|
|
|
|
self.width = self.img.shape[1] + 2
|
|
|
|
|
self.img = np.zeros([self.height, self.width])
|
|
|
|
|
self.img[1:-1:1, 1:-1:1] = values1better
|
|
|
|
|
self.img[1:-1:1, 1:-1:1] = rescaled
|
|
|
|
|
|
|
|
|
|
# Create meshgrid for 3D model
|
|
|
|
|
verticesX = np.around(np.linspace(0, self.width / 10, self.width), 3)
|
|
|
|
@ -245,7 +246,19 @@ class apply_filters:
|
|
|
|
|
def make_mesh(self):
|
|
|
|
|
''' Create mesh from image.
|
|
|
|
|
Create vertices from meshgrid, add depth values from image.
|
|
|
|
|
Create faces from vertices.
|
|
|
|
|
Create faces from vertices. Add veectors to the model.
|
|
|
|
|
|
|
|
|
|
From wikipedia.org/wiki/STL_(file_format):
|
|
|
|
|
ascii stl format consists of repeating struictures:
|
|
|
|
|
|
|
|
|
|
facet normal ni nj nk # normal vector
|
|
|
|
|
outer loop
|
|
|
|
|
vertex v1x v1y v1z # vertex 1
|
|
|
|
|
vertex v2x v2y v2z # vertex 2
|
|
|
|
|
vertex v3x v3y v3z # vertex 3
|
|
|
|
|
endloop
|
|
|
|
|
endfacet
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
# Convert meshgrid and image matrix to array of 3D points
|
|
|
|
@ -292,17 +305,17 @@ class apply_filters:
|
|
|
|
|
vertices = np.array(vertices)
|
|
|
|
|
|
|
|
|
|
# Create the mesh
|
|
|
|
|
self.model = mesh.Mesh(np.zeros(len(faces), dtype=mesh.Mesh.dtype))
|
|
|
|
|
self.stl_mesh = mesh.Mesh(np.zeros(len(faces), dtype=mesh.Mesh.dtype))
|
|
|
|
|
for i, face in enumerate(faces):
|
|
|
|
|
for j in range(3):
|
|
|
|
|
self.model.vectors[i][j] = vertices[face[j], :]
|
|
|
|
|
self.stl_mesh.vectors[i][j] = vertices[face[j], :]
|
|
|
|
|
self.stl_mesh.vectors[i][j] /= 2.54 # convert to inches
|
|
|
|
|
|
|
|
|
|
def save_model(self):
|
|
|
|
|
''' Save final model to stl file.
|
|
|
|
|
def save_mesh(self):
|
|
|
|
|
''' Save final mesh to stl file.
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
print("Saving lithophane to stl file", file=sys.stderr)
|
|
|
|
|
self.model.save('res/test.stl')
|
|
|
|
|
self.stl_mesh.save(self.args.stl_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = apply_filters()
|
|
|
|
|