|
|
|
"""! @file main.py
|
|
|
|
@brief Main file for the application
|
|
|
|
@author xlanro00
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Import basic libraries
|
|
|
|
import argparse as ap
|
|
|
|
import sys
|
|
|
|
import json
|
|
|
|
#from datetime import datetime
|
|
|
|
|
|
|
|
# Libraries for image processing
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
#from PIL import Image
|
|
|
|
import cv2 as cv
|
|
|
|
|
|
|
|
from stl import mesh
|
|
|
|
|
|
|
|
# Import custom image filter library
|
|
|
|
import filters as flt
|
|
|
|
|
|
|
|
|
|
|
|
class apply_filters:
|
|
|
|
def __init__(self):
|
|
|
|
# Parse arguments from command line
|
|
|
|
self.parse_arguments()
|
|
|
|
self.params = {}
|
|
|
|
self.filters = []
|
|
|
|
|
|
|
|
# Parse configuration from json file
|
|
|
|
if self.args.config:
|
|
|
|
self.config_file = self.args.config[0]
|
|
|
|
self.preset_name = self.args.config[1]
|
|
|
|
self.config = json.load(open(self.config_file))
|
|
|
|
print("Config loaded")
|
|
|
|
self.parse_conf()
|
|
|
|
|
|
|
|
# If no config file given, expect filters in command line
|
|
|
|
else:
|
|
|
|
if not self.args.filters:
|
|
|
|
print("No filters given, saving original image")
|
|
|
|
|
|
|
|
print("No config file given, using command line arguments")
|
|
|
|
i = 0
|
|
|
|
|
|
|
|
for filter in self.args.filters:
|
|
|
|
if filter.find('=') == -1:
|
|
|
|
# if no '=' in filter, it is a new filter
|
|
|
|
self.filters.append(filter)
|
|
|
|
i += 1
|
|
|
|
self.params[i] = {}
|
|
|
|
else:
|
|
|
|
# else it's a parameter for current filter
|
|
|
|
key, value = filter.split('=')
|
|
|
|
self.params[i][key] = value
|
|
|
|
self.parse_params(self.params[i])
|
|
|
|
|
|
|
|
self.input_file = self.args.input_file
|
|
|
|
self.output_file = self.args.output_file
|
|
|
|
self.dpi = self.args.dpi
|
|
|
|
self.run()
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
# read as numpy.array
|
|
|
|
self.img = cv.imread(self.input_file, cv.IMREAD_GRAYSCALE)
|
|
|
|
|
|
|
|
self.width = self.img.shape[1]
|
|
|
|
self.height = self.img.shape[0]
|
|
|
|
print(self.width, self.height)
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(self.width, self.height),
|
|
|
|
frameon=False, dpi=self.dpi / 100) # dpi is in cm
|
|
|
|
|
|
|
|
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
|
|
|
ax.set_axis_off()
|
|
|
|
fig.add_axes(ax)
|
|
|
|
|
|
|
|
if self.args.mirror:
|
|
|
|
self.mirror_image()
|
|
|
|
|
|
|
|
# Apply all filters and save image
|
|
|
|
self.apply_filter()
|
|
|
|
self.save_image(fig, ax)
|
|
|
|
plt.close()
|
|
|
|
if self.args.stl:
|
|
|
|
self.make_lithophane()
|
|
|
|
|
|
|
|
|
|
|
|
def parse_params(self, params):
|
|
|
|
possible_params = {"h", "searchWindowSize", "templateWindowSize",
|
|
|
|
"ksize", "kernel", "sigmaX", "sigmaY",
|
|
|
|
"sigmaColor", "sigmaSpace", "d", "anchor", "iterations",
|
|
|
|
"op", "strength"}
|
|
|
|
for key in possible_params:
|
|
|
|
try:
|
|
|
|
params[key] = params[key]
|
|
|
|
except KeyError:
|
|
|
|
params[key] = None
|
|
|
|
|
|
|
|
def parse_conf(self):
|
|
|
|
# Parse configuration file if given.
|
|
|
|
try:
|
|
|
|
filter_array = self.config[self.preset_name]
|
|
|
|
for i, filter in enumerate(range(len(filter_array)), start=1):
|
|
|
|
self.filters.append(filter_array[filter]["name"])
|
|
|
|
self.params[i] = {}
|
|
|
|
for attribute, value in filter_array[filter].items():
|
|
|
|
if attribute != "name":
|
|
|
|
self.params[i][attribute] = value
|
|
|
|
self.parse_params(self.params[i])
|
|
|
|
|
|
|
|
except(KeyError):
|
|
|
|
print("Preset not found", file=sys.stderr)
|
|
|
|
|
|
|
|
def parse_arguments(self):
|
|
|
|
|
|
|
|
# Parse arguments
|
|
|
|
parser = ap.ArgumentParser(prog='main.py',
|
|
|
|
description='Program for processing a 2D image into 3D fingerprint.',
|
|
|
|
usage='%(prog)s [-h] [-m | --mirror | --no-mirror] input_file output_file dpi ([-c config_file preset | --config config_file preset] | [filters ...])')
|
|
|
|
|
|
|
|
# positional arguments
|
|
|
|
parser.add_argument("input_file", type=str,
|
|
|
|
help="location with input file")
|
|
|
|
parser.add_argument("output_file", type=str,
|
|
|
|
help="output file location")
|
|
|
|
parser.add_argument("dpi", type=int, help="scanner dpi")
|
|
|
|
|
|
|
|
# boolean switch
|
|
|
|
parser.add_argument('-m', "--mirror", help="mirror input image",
|
|
|
|
type=bool, action=ap.BooleanOptionalAction)
|
|
|
|
|
|
|
|
parser.add_argument('-s', '--stl', help="make stl model from processed image",
|
|
|
|
type=bool, action=ap.BooleanOptionalAction)
|
|
|
|
|
|
|
|
# file with configuration containing presets, new preset name
|
|
|
|
# pair argument - give both or none
|
|
|
|
parser.add_argument('-c', '--config', nargs=2, metavar=('config_file', 'preset'),
|
|
|
|
help='pair: name of the config file with presets, name of the preset')
|
|
|
|
|
|
|
|
# array of unknown length, all filter names saved inside
|
|
|
|
parser.add_argument('filters', type=str, nargs='*',
|
|
|
|
help="list of filter names and their parameters in form [filter_name1 param1=value1 param2=value2 filter_name2 param1=value1...]")
|
|
|
|
|
|
|
|
self.args = parser.parse_args()
|
|
|
|
|
|
|
|
def filter_factory(self, filter_name):
|
|
|
|
''' Selects filter method of filters library.
|
|
|
|
'''
|
|
|
|
|
|
|
|
print("Applying " + filter_name + " filter", file=sys.stderr)
|
|
|
|
return getattr(flt, filter_name)
|
|
|
|
|
|
|
|
def resize_image(self):
|
|
|
|
|
|
|
|
print("Resize image", file=sys.stderr)
|
|
|
|
self.img = self.img.resize(
|
|
|
|
(np.array(self.width, self.height)).astype(int))
|
|
|
|
|
|
|
|
def mirror_image(self):
|
|
|
|
''' Mirror image when mirroring is needed,
|
|
|
|
should be used only if we want a positive model
|
|
|
|
'''
|
|
|
|
|
|
|
|
#TODO make this automatic for positive STL
|
|
|
|
print("Mirroring image", file=sys.stderr)
|
|
|
|
self.img = cv.flip(self.img, 1) # 1 for vertical mirror
|
|
|
|
|
|
|
|
def apply_filter(self):
|
|
|
|
''' Apply filters to image.
|
|
|
|
|
|
|
|
Applies the filters one by one, if no filters were given, just save original image output.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if len(self.filters) == 0:
|
|
|
|
# No filter given, just save the image
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
# Apply all filters
|
|
|
|
for i, filter_name in enumerate(self.filters):
|
|
|
|
filter = self.filter_factory(filter_name)
|
|
|
|
filter.apply(self, self.params[i+1])
|
|
|
|
|
|
|
|
def print_size(self, size):
|
|
|
|
print("Width: " + str(size[0]), file=sys.stderr)
|
|
|
|
print("Height: " + str(size[1]), file=sys.stderr)
|
|
|
|
|
|
|
|
def save_image(self, fig, ax):
|
|
|
|
''' Save processed image.
|
|
|
|
Colormap set to grayscale to avoid color mismatch.
|
|
|
|
'''
|
|
|
|
|
|
|
|
print("Saving image", file=sys.stderr)
|
|
|
|
ax.imshow(self.img, cmap="gray")
|
|
|
|
fig.savefig(fname=self.output_file)
|
|
|
|
|
|
|
|
def make_lithophane(self):
|
|
|
|
pass
|
|
|
|
'''After processing image, make a lithophane from it.
|
|
|
|
'''
|
|
|
|
|
|
|
|
print("Making meshgrid", file=sys.stderr)
|
|
|
|
self.make_meshgrid()
|
|
|
|
print("Converting to stl format", file=sys.stderr)
|
|
|
|
self.make_mesh()
|
|
|
|
plt.show()
|
|
|
|
self.save_model()
|
|
|
|
|
|
|
|
def make_meshgrid(self):
|
|
|
|
|
|
|
|
# Modify image to make it more suitable depth
|
|
|
|
# values1 = (1 + (1 - self.img/255)/6) * 255/10 # this works
|
|
|
|
# values2 = (1 - (1 - self.img/255)/6) * 255/10 # TODO: i dont know how to make white surrounding be extruded
|
|
|
|
values1better = 28.05 - 0.01*self.img
|
|
|
|
#values2better = 22.95 - 0.01*self.img
|
|
|
|
# (np.around(values2[::300],3))
|
|
|
|
|
|
|
|
# Add zero padding to image to make sides of the plate
|
|
|
|
self.height = self.img.shape[0] + 2
|
|
|
|
self.width = self.img.shape[1] + 2
|
|
|
|
self.img = np.zeros([self.height, self.width])
|
|
|
|
self.img[1:-1:1, 1:-1:1] = values1better
|
|
|
|
|
|
|
|
# Create meshgrid for 3D model
|
|
|
|
verticesX = np.around(np.linspace(0, self.width / 10, self.width), 3)
|
|
|
|
verticesY = np.around(np.linspace(0, self.height / 10, self.height), 3)
|
|
|
|
self.meshgrid = np.meshgrid(verticesX, verticesY)
|
|
|
|
|
|
|
|
def make_mesh(self):
|
|
|
|
# Convert meshgrid and image matrix to array of 3D points
|
|
|
|
vertice_arr = np.vstack(list(map(np.ravel, self.meshgrid))).T
|
|
|
|
z = (self.img / 10).reshape(-1, 1)
|
|
|
|
vertice_arr = np.concatenate((vertice_arr, z), axis=1)
|
|
|
|
|
|
|
|
# Convert back to matrix of 3D points
|
|
|
|
vertice_arr = vertice_arr.reshape(self.height, self.width, 3)
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
vertices = []
|
|
|
|
faces = []
|
|
|
|
|
|
|
|
# Function to add faces to the list
|
|
|
|
def add_faces(c):
|
|
|
|
faces.append([c, c + 1, c + 2])
|
|
|
|
faces.append([c + 1, c + 3, c + 2])
|
|
|
|
c += 4
|
|
|
|
return c
|
|
|
|
|
|
|
|
# Iterate over all vertices, create faces
|
|
|
|
for j in range(self.width - 1):
|
|
|
|
for i in range(self.height - 1):
|
|
|
|
|
|
|
|
vertices.append([vertice_arr[i][j]])
|
|
|
|
vertices.append([vertice_arr[i][j+1]])
|
|
|
|
vertices.append([vertice_arr[i+1][j]])
|
|
|
|
vertices.append([vertice_arr[i+1][j+1]])
|
|
|
|
|
|
|
|
count = add_faces(count)
|
|
|
|
|
|
|
|
# Add faces for the backside of the lithophane
|
|
|
|
# This makes it closed, so it can be printed
|
|
|
|
vertices.append([vertice_arr[0][0]])
|
|
|
|
vertices.append([vertice_arr[0][self.width - 1]])
|
|
|
|
vertices.append([vertice_arr[self.height - 1][0]])
|
|
|
|
vertices.append([vertice_arr[self.height - 1][self.width - 1]])
|
|
|
|
|
|
|
|
count = add_faces(count)
|
|
|
|
|
|
|
|
# Convert to numpy arrays
|
|
|
|
faces = np.array(faces)
|
|
|
|
vertices = np.array(vertices)
|
|
|
|
|
|
|
|
# Create the mesh
|
|
|
|
self.model = mesh.Mesh(np.zeros(len(faces), dtype=mesh.Mesh.dtype))
|
|
|
|
for i, face in enumerate(faces):
|
|
|
|
for j in range(3):
|
|
|
|
self.model.vectors[i][j] = vertices[face[j], :]
|
|
|
|
|
|
|
|
def save_model(self):
|
|
|
|
print("Saving stl model", file=sys.stderr)
|
|
|
|
self.model.save('res/test.stl')
|
|
|
|
|
|
|
|
|
|
|
|
image = apply_filters()
|