You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

233 lines
8.3 KiB

// Profilometer.cpp : This file contains the 'main' function. Program execution begins and ends there.
//
//Program flow:
// Initialize PMeter
// Set geometry constants - sigma, dist, radius
// Set camera constants - pixel dimensions, fov angles
// Precalculate other constants - trig expressions and such
// ---Precalculate curvature correction---
// Nevermind, this varies with horizontal position and therefore both x and y, would need full screen 2d array
// Maybe there's an approximation that's fixed in one of those and varies in the other?
// Per frame:
// Preprocessing - Calculate threshold for identifying intensity spikes
// Build incidence pixel (IP) array
// Laser likely centered, may not extend across whole fov -> start in middle of x range, not edge
// Prioritize neighborhood search to cut down number of operations
// Option 1: maximal intensity pixel is IP
// Option 2: find groups of pixels above threshold, use weighted average of the segment as IP
// Calculate real space depth of IPs
// Apply curvature correction
// Return depth array
//
#define _USE_MATH_DEFINES
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
class PMeter {
public:
int height, width;
// camera pixel dimensions
double alpha, beta;
// camera angle dimensions
// full fov is 2* this angle, vertical and horizontal respectively
// 0 < alpha < sigma
// alpha >= sigma causes phi singularity
// 0 < beta < pi/2
double sigma;
// angle between laser plane and camera center line
// 0 < sigma < pi/2
double dist;
// distance between camera and laser
double tan_alpha;
double tan_beta;
double* tan_phi_arr;
double* tan_theta_arr;
double sin_sigma;
double cos_sigma;
double p_h;
void fastinit(int h, int w, double a, double b, double s, double d) {
// class variable initializer
height = h;
width = w;
alpha = a;
beta = b;
sigma = s;
dist = d;
trig_precalc();
}
void trig_precalc() {
tan_alpha = tan(alpha);
tan_beta = tan(beta);
tan_phi_arr = (double*)malloc(sizeof(double) * height);
for (int i = 0; i < height; i++) {
//tan_phi_arr[i] = tan_alpha / height * (2 * i + 1 - height);
tan_phi_arr[i] = tan_alpha / height * (2 * i - height);
}
tan_theta_arr = (double*)malloc(sizeof(double) * width);
for (int i = 0; i < width; i++) {
//tan_theta_arr[i] = -tan_beta / width * (2 * i - 1 - width);
tan_theta_arr[i] = -tan_beta / width * (2 * i - width);
}
sin_sigma = sin(sigma);
cos_sigma = cos(sigma);
p_h = 2 * dist / height * tan_alpha / sin_sigma;
}
void print_conf() {
std::cout << "Height: " << height << "\n";
std::cout << "Width: " << width << "\n";
std::cout << "Alpha: " << alpha << "\n";
std::cout << "Beta: " << beta << "\n";
std::cout << "Sigma: " << sigma << "\n";
std::cout << "Dist: " << dist << "\n";
//std::cout << "Phi: " << phi << "\n";
//std::cout << "Theta: " << theta << "\n";
}
double get_phi(int y) {
// phi is angle below camera center line of given y coordinate - above center is negative
// returns phi at pixel center, removing the +1 shifts this to low edge
// alpha >= phi >= -alpha
double phi = atan(tan_phi_arr[y]);
return phi;
}
double get_theta(int x) {
// theta is horizontal angle between center line and given x coordinate
// returns theta at pixel center, removing the -1 shifts this to low edge
// beta >= theta >= -beta
// if viewed from above, positive theta means pixel vector is to the left of center, i.e. x < width/2
double theta = atan(tan_theta_arr[x]);
return theta;
}
double sin_sp(int y) {
// sin( sigma + phi)
return sin_sigma + cos_sigma * tan_phi_arr[y] / sqrt(1 + tan_phi_arr[y]);
}
double cos_sp(int y) {
// cos( sigma + phi)
return cos_sigma + sin_sigma * tan_phi_arr[y] / sqrt(1 + tan_phi_arr[y]);
}
double pixel_delta_approx(int y) {
// returns approximation of change in elevation from y to y+1
// assumes that epsilon=0
//double delta = 2 * dist * tan(alpha) * cos(phi) / (height * sin(sigma + phi) * sin(sigma + phi));
double delta = p_h * sin_sigma / (sin_sigma + cos_sigma * tan_phi_arr[y]);
return delta;
}
double pixel_delta_exact(int y) {
// returns exact change in elevation from y to y+1
//double tan_eps = 2 * tan(alpha) * cos(phi) * cos(phi) / (height + 2 * tan(alpha) * sin(phi) * cos(phi));
double tan_phi = tan_phi_arr[y];
double tan_eps = 2 * tan_alpha / (height * (1 + tan_phi * tan_phi) + 2 * tan_alpha * tan_phi);
std::cout << "Tan(eps) at phi=" << get_phi(y) << ": " << tan_eps << "\n";
//double delta = 2 * dist * tan(alpha) * cos(phi) * (cos(phi) - sin(phi) * tan_eps) / (height * sin(sigma + phi) * (sin(sigma + phi) + cos(sigma + phi) * tan_eps));
//double delta = dist * tan_eps / (sin_sp(y) * (sin_sp(y) + tan_eps * cos_sp(y)));
double delta = 2 * dist * tan_alpha * (1 - tan_phi_arr[y] * tan_eps) / (height * sin_sp(y) * (sin_sp(y) + cos_sp(y) * tan_eps));
return delta;
}
double get_elevation(int y) {
// elevation above horizontal camera plane
// singularity if phi = -sigma
// flat projection surface -> x coordinate irrelevant
//double e = dist / tan(phi + sigma);
double e = dist * cos_sp(y) / sin_sp(y);
return e;
}
double get_horizontal_dist(int x, int y) {
// get horizontal distance from center line, same sign convention as theta
// generally depends on both x and y
//double f = dist * tan(theta) / sin(sigma + phi);
double f = dist * tan_theta_arr[x] / sin_sp(y);
return f;
}
/*
void approx_test_phi(double new_phi) {
// print exact and approximate delta and the error at given phi
// changes phi
phi = new_phi;
double da = pixel_delta_approx();
std::cout << "Delta approx.: " << da << "\n";
double de = pixel_delta_exact();
std::cout << "Delta exact: " << de << "\n";
std::cout << "Error absolute: " << (de - da) << "\n";
std::cout << "Error relative: " << (de - da)/de << "\n";
}
*/
void approx_test(int y) {
double da = pixel_delta_approx(y);
std::cout << "Delta approx.: " << da << "\n";
double de = pixel_delta_exact(y);
std::cout << "Delta exact: " << de << "\n";
std::cout << "Error absolute: " << (de - da) << "\n";
std::cout << "Error relative: " << (de - da) / de << "\n";
}
/*
void edge_test() {
// run approx_test_phi at bottom edge, phi=0, and top edge
// preserves phi
double old_phi = phi;
std::cout << "\nMax phi\n";
approx_test_phi(alpha);
std::cout << "\nZero phi\n";
approx_test_phi(0.0);
std::cout << "\nMin phi\n";
approx_test_phi(-1*alpha);
phi = old_phi;
}
*/
void edge_test() {
// run approx_test_phi at y = {0, height/2, height-1}
std::cout << "\ny = h - 1\n";
approx_test(height - 1);
std::cout << "\ny = h/2\n";
approx_test(height/2);
std::cout << "\ny = 0\n";
approx_test(0);
}
};
int main()
{
PMeter PM;
// fastinit(int h, int w, double a, double b, double s, double d)
PM.fastinit(3120, 4208, M_PI / 180 * 21.5, M_PI / 180 * 43, M_PI / 180 * 51, 0.05);
PM.print_conf();
std::cout << "phi at y=50 is " << PM.get_phi(50) << "\n";
PM.edge_test();
////cv::Mat image = cv::imread("./PM_test_0.bmp");
//cv::Mat image = cv::imread("./PM_test_1.png");
////cv::Mat image = cv::imread("./PM_test_2.png");
//
//cv::String windowName = "imtest";
//cv::namedWindow(windowName);
//cv::imshow(windowName, image);
//cv::waitKey(0);
std::cout << "\n===\nEnd of main()\n===\n";
}