You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
13 KiB
296 lines
13 KiB
5 months ago
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||
|
// Licensed under the MIT License.
|
||
|
|
||
|
#pragma once
|
||
|
#include "onnxruntime_training_c_api.h"
|
||
|
#include "onnxruntime_cxx_api.h"
|
||
|
|
||
|
namespace Ort {
|
||
|
|
||
|
inline TrainingSession::TrainingSession(const Env& env, const SessionOptions& session_options,
|
||
|
CheckpointState& checkpoint_state,
|
||
|
const std::basic_string<ORTCHAR_T>& train_model_path,
|
||
|
const std::optional<std::basic_string<ORTCHAR_T>>& eval_model_path,
|
||
|
const std::optional<std::basic_string<ORTCHAR_T>>& optimizer_model_path) {
|
||
|
ThrowOnError(GetTrainingApi().CreateTrainingSession(
|
||
|
env, session_options, checkpoint_state,
|
||
|
train_model_path.c_str(),
|
||
|
eval_model_path.has_value() ? eval_model_path.value().c_str() : nullptr,
|
||
|
optimizer_model_path.has_value() ? optimizer_model_path.value().c_str() : nullptr,
|
||
|
&p_));
|
||
|
|
||
|
ThrowOnError(GetTrainingApi().TrainingSessionGetTrainingModelOutputCount(p_, &training_model_output_count_));
|
||
|
|
||
|
ThrowOnError(GetTrainingApi().TrainingSessionGetEvalModelOutputCount(p_, &eval_model_output_count_));
|
||
|
}
|
||
|
|
||
|
inline TrainingSession::TrainingSession(const Env& env, const SessionOptions& session_options,
|
||
|
CheckpointState& checkpoint_state,
|
||
|
const std::vector<uint8_t>& train_model_data,
|
||
|
const std::vector<uint8_t>& eval_model_data,
|
||
|
const std::vector<uint8_t>& optim_model_data) {
|
||
|
ThrowOnError(GetTrainingApi().CreateTrainingSessionFromBuffer(
|
||
|
env, session_options, checkpoint_state,
|
||
|
train_model_data.data(), train_model_data.size(),
|
||
|
eval_model_data.data(), eval_model_data.size(),
|
||
|
optim_model_data.data(), optim_model_data.size(),
|
||
|
&p_));
|
||
|
|
||
|
ThrowOnError(GetTrainingApi().TrainingSessionGetTrainingModelOutputCount(p_, &training_model_output_count_));
|
||
|
|
||
|
ThrowOnError(GetTrainingApi().TrainingSessionGetEvalModelOutputCount(p_, &eval_model_output_count_));
|
||
|
}
|
||
|
|
||
|
inline std::vector<Value> TrainingSession::TrainStep(const std::vector<Value>& input_values) {
|
||
|
std::vector<Value> output_values;
|
||
|
output_values.reserve(training_model_output_count_);
|
||
|
for (size_t i = 0; i < training_model_output_count_; i++) output_values.emplace_back(nullptr);
|
||
|
auto ort_input_values = reinterpret_cast<const OrtValue* const*>(input_values.data());
|
||
|
auto ort_output_values = reinterpret_cast<OrtValue**>(output_values.data());
|
||
|
RunOptions run_options;
|
||
|
ThrowOnError(GetTrainingApi().TrainStep(
|
||
|
p_, run_options, input_values.size(), ort_input_values,
|
||
|
training_model_output_count_, ort_output_values));
|
||
|
|
||
|
return output_values;
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::LazyResetGrad() {
|
||
|
ThrowOnError(GetTrainingApi().LazyResetGrad(p_));
|
||
|
}
|
||
|
|
||
|
inline std::vector<Value> TrainingSession::EvalStep(const std::vector<Value>& input_values) {
|
||
|
std::vector<Value> output_values;
|
||
|
output_values.reserve(eval_model_output_count_);
|
||
|
for (size_t i = 0; i < eval_model_output_count_; i++) output_values.emplace_back(nullptr);
|
||
|
auto ort_input_values = reinterpret_cast<const OrtValue* const*>(input_values.data());
|
||
|
auto ort_output_values = reinterpret_cast<OrtValue**>(output_values.data());
|
||
|
RunOptions run_options;
|
||
|
ThrowOnError(GetTrainingApi().EvalStep(
|
||
|
p_, run_options, input_values.size(), ort_input_values,
|
||
|
eval_model_output_count_, ort_output_values));
|
||
|
|
||
|
return output_values;
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::SetLearningRate(float learning_rate) {
|
||
|
ThrowOnError(GetTrainingApi().SetLearningRate(p_, learning_rate));
|
||
|
}
|
||
|
|
||
|
inline float TrainingSession::GetLearningRate() const {
|
||
|
float learning_rate = 0;
|
||
|
ThrowOnError(GetTrainingApi().GetLearningRate(p_, &learning_rate));
|
||
|
return learning_rate;
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::RegisterLinearLRScheduler(int64_t warmup_step_count, int64_t total_step_count,
|
||
|
float initial_lr) {
|
||
|
ThrowOnError(GetTrainingApi().RegisterLinearLRScheduler(p_, warmup_step_count, total_step_count,
|
||
|
initial_lr));
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::SchedulerStep() {
|
||
|
ThrowOnError(GetTrainingApi().SchedulerStep(p_));
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::OptimizerStep() {
|
||
|
RunOptions run_options;
|
||
|
ThrowOnError(GetTrainingApi().OptimizerStep(p_, run_options));
|
||
|
}
|
||
|
|
||
|
inline std::vector<std::string> TrainingSession::InputNames(const bool training) {
|
||
|
auto& input_count_function = training ? GetTrainingApi().TrainingSessionGetTrainingModelInputCount
|
||
|
: GetTrainingApi().TrainingSessionGetEvalModelInputCount;
|
||
|
auto& input_name_function = training ? GetTrainingApi().TrainingSessionGetTrainingModelInputName
|
||
|
: GetTrainingApi().TrainingSessionGetEvalModelInputName;
|
||
|
|
||
|
size_t input_count = 0;
|
||
|
ThrowOnError(input_count_function(p_, &input_count));
|
||
|
std::vector<std::string> input_names(input_count);
|
||
|
AllocatorWithDefaultOptions allocator;
|
||
|
for (size_t index = 0; index < input_count; ++index) {
|
||
|
char* input_name;
|
||
|
ThrowOnError(input_name_function(p_, index, allocator, &input_name));
|
||
|
input_names[index] = std::string(input_name);
|
||
|
allocator.Free(input_name);
|
||
|
}
|
||
|
|
||
|
return input_names;
|
||
|
}
|
||
|
|
||
|
inline std::vector<std::string> TrainingSession::OutputNames(const bool training) {
|
||
|
auto& output_count_function = training ? GetTrainingApi().TrainingSessionGetTrainingModelOutputCount
|
||
|
: GetTrainingApi().TrainingSessionGetEvalModelOutputCount;
|
||
|
auto& output_name_function = training ? GetTrainingApi().TrainingSessionGetTrainingModelOutputName
|
||
|
: GetTrainingApi().TrainingSessionGetEvalModelOutputName;
|
||
|
|
||
|
size_t output_count = 0;
|
||
|
ThrowOnError(output_count_function(p_, &output_count));
|
||
|
std::vector<std::string> output_names(output_count);
|
||
|
AllocatorWithDefaultOptions allocator;
|
||
|
for (size_t index = 0; index < output_count; ++index) {
|
||
|
char* output_name;
|
||
|
ThrowOnError(output_name_function(p_, index, allocator, &output_name));
|
||
|
output_names[index] = std::string(output_name);
|
||
|
allocator.Free(output_name);
|
||
|
}
|
||
|
|
||
|
return output_names;
|
||
|
}
|
||
|
|
||
|
inline Value TrainingSession::ToBuffer(const bool only_trainable) {
|
||
|
size_t buffer_size = 0U;
|
||
|
ThrowOnError(GetTrainingApi().GetParametersSize(p_, &buffer_size, only_trainable));
|
||
|
|
||
|
std::array<int64_t, 1> buffer_shape{static_cast<int64_t>(buffer_size)};
|
||
|
|
||
|
AllocatorWithDefaultOptions allocator;
|
||
|
Value buffer = Value::CreateTensor(allocator, buffer_shape.data(), 1U,
|
||
|
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT);
|
||
|
|
||
|
ThrowOnError(GetTrainingApi().CopyParametersToBuffer(p_, buffer, only_trainable));
|
||
|
|
||
|
return buffer;
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::FromBuffer(Value& buffer) {
|
||
|
if (!buffer.IsTensor()) {
|
||
|
ThrowStatus(Status("Incorrect buffer received. Expected a tensor buffer.", OrtErrorCode::ORT_INVALID_ARGUMENT));
|
||
|
}
|
||
|
|
||
|
auto tensor_info = buffer.GetTensorTypeAndShapeInfo();
|
||
|
auto buffer_shape = tensor_info.GetShape();
|
||
|
|
||
|
if (buffer_shape.size() != 1U) {
|
||
|
ThrowStatus(Status("Incorrect buffer received. Expected a contiguous tensor buffer.",
|
||
|
OrtErrorCode::ORT_INVALID_ARGUMENT));
|
||
|
}
|
||
|
|
||
|
auto buffer_size = buffer_shape.front();
|
||
|
|
||
|
size_t session_buffer_size = 0U;
|
||
|
ThrowOnError(GetTrainingApi().GetParametersSize(p_, &session_buffer_size, false));
|
||
|
|
||
|
if (buffer_size == static_cast<int64_t>(session_buffer_size)) {
|
||
|
ThrowOnError(GetTrainingApi().CopyBufferToParameters(p_, buffer, false));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
size_t session_buffer_size_trainable_only = 0U;
|
||
|
ThrowOnError(GetTrainingApi().GetParametersSize(p_, &session_buffer_size_trainable_only, true));
|
||
|
|
||
|
if (buffer_size == static_cast<int64_t>(session_buffer_size_trainable_only)) {
|
||
|
ThrowOnError(GetTrainingApi().CopyBufferToParameters(p_, buffer, true));
|
||
|
return;
|
||
|
} else {
|
||
|
ThrowStatus(Status("Incorrect buffer size received.", OrtErrorCode::ORT_INVALID_ARGUMENT));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline CheckpointState CheckpointState::LoadCheckpoint(const std::basic_string<ORTCHAR_T>& path_to_checkpoint) {
|
||
|
OrtCheckpointState* checkpoint_state;
|
||
|
ThrowOnError(GetTrainingApi().LoadCheckpoint(path_to_checkpoint.c_str(), &checkpoint_state));
|
||
|
return CheckpointState(checkpoint_state);
|
||
|
}
|
||
|
|
||
|
inline CheckpointState CheckpointState::LoadCheckpointFromBuffer(const std::vector<uint8_t>& buffer) {
|
||
|
OrtCheckpointState* checkpoint_state;
|
||
|
ThrowOnError(GetTrainingApi().LoadCheckpointFromBuffer(buffer.data(), buffer.size(), &checkpoint_state));
|
||
|
return CheckpointState(checkpoint_state);
|
||
|
}
|
||
|
|
||
|
inline void CheckpointState::SaveCheckpoint(const CheckpointState& checkpoint_states,
|
||
|
const std::basic_string<ORTCHAR_T>& path_to_checkpoint,
|
||
|
const bool include_optimizer_state) {
|
||
|
ThrowOnError(GetTrainingApi().SaveCheckpoint(checkpoint_states, path_to_checkpoint.c_str(),
|
||
|
include_optimizer_state));
|
||
|
}
|
||
|
|
||
|
inline void TrainingSession::ExportModelForInferencing(const std::basic_string<ORTCHAR_T>& inference_model_path,
|
||
|
const std::vector<std::string>& graph_output_names) {
|
||
|
std::vector<const char*> output_names;
|
||
|
output_names.reserve(graph_output_names.size());
|
||
|
for (const auto& output_name : graph_output_names) {
|
||
|
output_names.push_back(output_name.c_str());
|
||
|
}
|
||
|
ThrowOnError(GetTrainingApi().ExportModelForInferencing(
|
||
|
p_, inference_model_path.c_str(), graph_output_names.size(), output_names.data()));
|
||
|
}
|
||
|
|
||
|
inline void SetSeed(const int64_t seed) {
|
||
|
ThrowOnError(GetTrainingApi().SetSeed(seed));
|
||
|
}
|
||
|
|
||
|
inline void CheckpointState::AddProperty(const std::string& property_name, const Property& property_value) {
|
||
|
if (std::holds_alternative<int64_t>(property_value)) {
|
||
|
int64_t value = std::get<int64_t>(property_value);
|
||
|
void* value_p = &value;
|
||
|
ThrowOnError(GetTrainingApi().AddProperty(p_, property_name.c_str(), OrtPropertyType::OrtIntProperty, value_p));
|
||
|
} else if (std::holds_alternative<float>(property_value)) {
|
||
|
float value = std::get<float>(property_value);
|
||
|
void* value_p = &value;
|
||
|
ThrowOnError(GetTrainingApi().AddProperty(p_, property_name.c_str(), OrtPropertyType::OrtFloatProperty, value_p));
|
||
|
} else if (std::holds_alternative<std::string>(property_value)) {
|
||
|
std::string value = std::get<std::string>(property_value);
|
||
|
auto buffer = std::make_unique<char[]>(value.length() + 1);
|
||
|
memcpy(buffer.get(), value.c_str(), value.length());
|
||
|
// AddProperty takes a char* and calls PropertyBag::AddProperty which takes a std::string. The data will be
|
||
|
// copied at that point so buffer can free the local allocation once the call is made.
|
||
|
ThrowOnError(GetTrainingApi().AddProperty(p_, property_name.c_str(), OrtPropertyType::OrtStringProperty,
|
||
|
buffer.get()));
|
||
|
} else {
|
||
|
ThrowStatus(Status("Unknown property type received.", OrtErrorCode::ORT_INVALID_ARGUMENT));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline Property CheckpointState::GetProperty(const std::string& property_name) {
|
||
|
void* property_value = nullptr;
|
||
|
OrtPropertyType property_type;
|
||
|
|
||
|
AllocatorWithDefaultOptions allocator;
|
||
|
ThrowOnError(GetTrainingApi().GetProperty(p_, property_name.c_str(), allocator, &property_type, &property_value));
|
||
|
|
||
|
Property property;
|
||
|
|
||
|
switch (property_type) {
|
||
|
case OrtPropertyType::OrtIntProperty: {
|
||
|
auto value_p = reinterpret_cast<int64_t*>(property_value);
|
||
|
property = *value_p;
|
||
|
allocator.Free(property_value);
|
||
|
break;
|
||
|
}
|
||
|
case OrtPropertyType::OrtFloatProperty: {
|
||
|
auto value_p = reinterpret_cast<float*>(property_value);
|
||
|
property = *value_p;
|
||
|
allocator.Free(property_value);
|
||
|
break;
|
||
|
}
|
||
|
case OrtPropertyType::OrtStringProperty: {
|
||
|
auto value_p = reinterpret_cast<char*>(property_value);
|
||
|
property = std::string(value_p);
|
||
|
allocator.Free(property_value);
|
||
|
break;
|
||
|
}
|
||
|
default: {
|
||
|
ThrowStatus(Status("Unknown property type received.", OrtErrorCode::ORT_INVALID_ARGUMENT));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return property;
|
||
|
}
|
||
|
|
||
|
inline void CheckpointState::UpdateParameter(const std::string& parameter_name, const Value& parameter) {
|
||
|
ThrowOnError(GetTrainingApi().UpdateParameter(p_, parameter_name.c_str(), parameter));
|
||
|
}
|
||
|
|
||
|
inline Value CheckpointState::GetParameter(const std::string& parameter_name) {
|
||
|
AllocatorWithDefaultOptions allocator;
|
||
|
OrtValue* parameter;
|
||
|
ThrowOnError(GetTrainingApi().GetParameter(p_, parameter_name.c_str(), allocator, ¶meter));
|
||
|
|
||
|
return Value{parameter};
|
||
|
}
|
||
|
|
||
|
} // namespace Ort
|