You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ZouJiu1 17e6b9c270
Correct `scipy.optimize.linear_sum_assignment` usage (#4390)
1 year ago
..
utils Correct `scipy.optimize.linear_sum_assignment` usage (#4390) 1 year ago
README.md `ultralytics 8.0.136` refactor and simplify package (#3748) 2 years ago
__init__.py `ultralytics 8.0.136` refactor and simplify package (#3748) 2 years ago
basetrack.py `ultralytics 8.0.136` refactor and simplify package (#3748) 2 years ago
bot_sort.py `ultralytics 8.0.136` refactor and simplify package (#3748) 2 years ago
byte_tracker.py `ultralytics 8.0.136` refactor and simplify package (#3748) 2 years ago
track.py `ultralytics 8.0.136` refactor and simplify package (#3748) 2 years ago

README.md

Tracker

Supported Trackers

  • ByteTracker
  • BoT-SORT

Usage

python interface:

You can use the Python interface to track objects using the YOLO model.

from ultralytics import YOLO

model = YOLO("yolov8n.pt")  # or a segmentation model .i.e yolov8n-seg.pt
model.track(
    source="video/streams",
    stream=True,
    tracker="botsort.yaml",  # or 'bytetrack.yaml'
    show=True,
)

You can get the IDs of the tracked objects using the following code:

from ultralytics import YOLO

model = YOLO("yolov8n.pt")

for result in model.track(source="video.mp4"):
    print(
        result.boxes.id.cpu().numpy().astype(int)
    )  # this will print the IDs of the tracked objects in the frame

If you want to use the tracker with a folder of images or when you loop on the video frames, you should use the persist parameter to tell the model that these frames are related to each other so the IDs will be fixed for the same objects. Otherwise, the IDs will be different in each frame because in each loop, the model creates a new object for tracking, but the persist parameter makes it use the same object for tracking.

import cv2
from ultralytics import YOLO

cap = cv2.VideoCapture("video.mp4")
model = YOLO("yolov8n.pt")
while True:
    ret, frame = cap.read()
    if not ret:
        break
    results = model.track(frame, persist=True)
    boxes = results[0].boxes.xyxy.cpu().numpy().astype(int)
    ids = results[0].boxes.id.cpu().numpy().astype(int)
    for box, id in zip(boxes, ids):
        cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
        cv2.putText(
            frame,
            f"Id {id}",
            (box[0], box[1]),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 255),
            2,
        )
    cv2.imshow("frame", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

Change tracker parameters

You can change the tracker parameters by eding the tracker.yaml file which is located in the ultralytics/cfg/trackers folder.

Command Line Interface (CLI)

You can also use the command line interface to track objects using the YOLO model.

yolo detect track source=... tracker=...
yolo segment track source=... tracker=...
yolo pose track source=... tracker=...

By default, trackers will use the configuration in ultralytics/cfg/trackers. We also support using a modified tracker config file. Please refer to the tracker config files in ultralytics/cfg/trackers.