You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
5.2 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
import platform
from pathlib import Path
import cv2
import numpy as np
import torch
from PIL import Image
from ultralytics import YOLO
from ultralytics.yolo.data.build import load_inference_source
from ultralytics.yolo.utils import ROOT, SETTINGS
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
CFG = 'yolov8n.yaml'
SOURCE = ROOT / 'assets/bus.jpg'
MACOS = platform.system() == 'Darwin' # macOS environment
def test_model_forward():
model = YOLO(CFG)
model(SOURCE)
def test_model_info():
model = YOLO(CFG)
model.info()
model = YOLO(MODEL)
model.info(verbose=True)
def test_model_fuse():
model = YOLO(CFG)
model.fuse()
model = YOLO(MODEL)
model.fuse()
def test_predict_dir():
model = YOLO(MODEL)
model(source=ROOT / "assets")
def test_predict_img():
model = YOLO(MODEL)
img = Image.open(str(SOURCE))
output = model(source=img, save=True, verbose=True) # PIL
assert len(output) == 1, "predict test failed"
img = cv2.imread(str(SOURCE))
output = model(source=img, save=True, save_txt=True) # ndarray
assert len(output) == 1, "predict test failed"
output = model(source=[img, img], save=True, save_txt=True) # batch
assert len(output) == 2, "predict test failed"
output = model(source=[img, img], save=True, stream=True) # stream
assert len(list(output)) == 2, "predict test failed"
tens = torch.zeros(320, 640, 3)
output = model(tens.numpy())
assert len(output) == 1, "predict test failed"
# test multiple source
imgs = [
SOURCE, # filename
Path(SOURCE), # Path
'https://ultralytics.com/images/zidane.jpg', # URI
cv2.imread(str(SOURCE)), # OpenCV
Image.open(SOURCE), # PIL
np.zeros((320, 640, 3))] # numpy
output = model(imgs)
assert len(output) == 6, "predict test failed!"
def test_val():
model = YOLO(MODEL)
model.val(data="coco8.yaml", imgsz=32)
def test_train_scratch():
model = YOLO(CFG)
model.train(data="coco8.yaml", epochs=1, imgsz=32)
model(SOURCE)
def test_train_pretrained():
model = YOLO(MODEL)
model.train(data="coco8.yaml", epochs=1, imgsz=32)
model(SOURCE)
def test_export_torchscript():
"""
Format Argument Suffix CPU GPU
0 PyTorch - .pt True True
1 TorchScript torchscript .torchscript True True
2 ONNX onnx .onnx True True
3 OpenVINO openvino _openvino_model True False
4 TensorRT engine .engine False True
5 CoreML coreml .mlmodel True False
6 TensorFlow SavedModel saved_model _saved_model True True
7 TensorFlow GraphDef pb .pb True True
8 TensorFlow Lite tflite .tflite True False
9 TensorFlow Edge TPU edgetpu _edgetpu.tflite False False
10 TensorFlow.js tfjs _web_model False False
11 PaddlePaddle paddle _paddle_model True True
"""
from ultralytics.yolo.engine.exporter import export_formats
print(export_formats())
model = YOLO(MODEL)
f = model.export(format='torchscript')
YOLO(f)(SOURCE) # exported model inference
def test_export_onnx():
model = YOLO(MODEL)
f = model.export(format='onnx')
YOLO(f)(SOURCE) # exported model inference
def test_export_openvino():
model = YOLO(MODEL)
f = model.export(format='openvino')
YOLO(f)(SOURCE) # exported model inference
def test_export_coreml(): # sourcery skip: move-assign
model = YOLO(MODEL)
f = model.export(format='coreml')
if MACOS:
YOLO(f)(SOURCE) # model prediction only supported on macOS
def test_export_paddle(enabled=False):
# Paddle protobuf requirements conflicting with onnx protobuf requirements
if enabled:
model = YOLO(MODEL)
model.export(format='paddle')
def test_all_model_yamls():
for m in list((ROOT / 'models').rglob('*.yaml')):
YOLO(m.name)
def test_workflow():
model = YOLO(MODEL)
model.train(data="coco8.yaml", epochs=1, imgsz=32)
model.val()
print(model.metrics)
model.predict(SOURCE)
model.export(format="onnx", opset=12) # export a model to ONNX format
def test_predict_callback_and_setup():
def on_predict_batch_end(predictor):
# results -> List[batch_size]
path, _, im0s, _, _ = predictor.batch
# print('on_predict_batch_end', im0s[0].shape)
bs = [predictor.dataset.bs for _ in range(len(path))]
predictor.results = zip(predictor.results, im0s, bs)
model = YOLO("yolov8n.pt")
model.add_callback("on_predict_batch_end", on_predict_batch_end)
dataset = load_inference_source(source=SOURCE, transforms=model.transforms)
bs = dataset.bs # noqa access predictor properties
results = model.predict(dataset, stream=True) # source already setup
for _, (result, im0, bs) in enumerate(results):
print('test_callback', im0.shape)
print('test_callback', bs)
boxes = result.boxes # Boxes object for bbox outputs
print(boxes)