You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1220 lines
54 KiB
1220 lines
54 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
"""
|
|
Dataloaders and dataset utils
|
|
"""
|
|
|
|
import contextlib
|
|
import glob
|
|
import hashlib
|
|
import json
|
|
import math
|
|
import os
|
|
import random
|
|
import shutil
|
|
import time
|
|
from itertools import repeat
|
|
from multiprocessing.pool import Pool, ThreadPool
|
|
from pathlib import Path
|
|
from threading import Thread
|
|
from urllib.parse import urlparse
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import psutil
|
|
import torch
|
|
import torchvision
|
|
import yaml
|
|
from PIL import ExifTags, Image, ImageOps
|
|
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
|
from tqdm import tqdm
|
|
|
|
from ultralytics.yolo.data.utils import check_dataset, unzip_file
|
|
from ultralytics.yolo.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, is_colab, is_dir_writeable,
|
|
is_kaggle)
|
|
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
|
|
from ultralytics.yolo.utils.ops import clean_str, segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn
|
|
from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first
|
|
|
|
from .v5augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
|
|
letterbox, mixup, random_perspective)
|
|
|
|
# Parameters
|
|
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
|
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
|
|
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
|
RANK = int(os.getenv('RANK', -1))
|
|
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
|
|
|
|
# Get orientation exif tag
|
|
for orientation in ExifTags.TAGS.keys():
|
|
if ExifTags.TAGS[orientation] == 'Orientation':
|
|
break
|
|
|
|
|
|
def get_hash(paths):
|
|
# Returns a single hash value of a list of paths (files or dirs)
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
|
h = hashlib.md5(str(size).encode()) # hash sizes
|
|
h.update(''.join(paths).encode()) # hash paths
|
|
return h.hexdigest() # return hash
|
|
|
|
|
|
def exif_size(img):
|
|
# Returns exif-corrected PIL size
|
|
s = img.size # (width, height)
|
|
with contextlib.suppress(Exception):
|
|
rotation = dict(img._getexif().items())[orientation]
|
|
if rotation in [6, 8]: # rotation 270 or 90
|
|
s = (s[1], s[0])
|
|
return s
|
|
|
|
|
|
def exif_transpose(image):
|
|
"""
|
|
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
|
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
|
|
|
:param image: The image to transpose.
|
|
:return: An image.
|
|
"""
|
|
exif = image.getexif()
|
|
orientation = exif.get(0x0112, 1) # default 1
|
|
if orientation > 1:
|
|
method = {
|
|
2: Image.FLIP_LEFT_RIGHT,
|
|
3: Image.ROTATE_180,
|
|
4: Image.FLIP_TOP_BOTTOM,
|
|
5: Image.TRANSPOSE,
|
|
6: Image.ROTATE_270,
|
|
7: Image.TRANSVERSE,
|
|
8: Image.ROTATE_90}.get(orientation)
|
|
if method is not None:
|
|
image = image.transpose(method)
|
|
del exif[0x0112]
|
|
image.info["exif"] = exif.tobytes()
|
|
return image
|
|
|
|
|
|
def seed_worker(worker_id):
|
|
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
|
worker_seed = torch.initial_seed() % 2 ** 32
|
|
np.random.seed(worker_seed)
|
|
random.seed(worker_seed)
|
|
|
|
|
|
def create_dataloader(path,
|
|
imgsz,
|
|
batch_size,
|
|
stride,
|
|
single_cls=False,
|
|
hyp=None,
|
|
augment=False,
|
|
cache=False,
|
|
pad=0.0,
|
|
rect=False,
|
|
rank=-1,
|
|
workers=8,
|
|
image_weights=False,
|
|
close_mosaic=False,
|
|
min_items=0,
|
|
prefix='',
|
|
shuffle=False,
|
|
seed=0):
|
|
if rect and shuffle:
|
|
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
|
shuffle = False
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
|
dataset = LoadImagesAndLabels(
|
|
path,
|
|
imgsz,
|
|
batch_size,
|
|
augment=augment, # augmentation
|
|
hyp=hyp, # hyperparameters
|
|
rect=rect, # rectangular batches
|
|
cache_images=cache,
|
|
single_cls=single_cls,
|
|
stride=int(stride),
|
|
pad=pad,
|
|
image_weights=image_weights,
|
|
min_items=min_items,
|
|
prefix=prefix)
|
|
|
|
batch_size = min(batch_size, len(dataset))
|
|
nd = torch.cuda.device_count() # number of CUDA devices
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader # DataLoader allows attribute updates
|
|
generator = torch.Generator()
|
|
generator.manual_seed(6148914691236517205 + seed + RANK)
|
|
return loader(dataset,
|
|
batch_size=batch_size,
|
|
shuffle=shuffle and sampler is None,
|
|
num_workers=nw,
|
|
sampler=sampler,
|
|
pin_memory=PIN_MEMORY,
|
|
collate_fn=LoadImagesAndLabels.collate_fn,
|
|
worker_init_fn=seed_worker,
|
|
generator=generator), dataset
|
|
|
|
|
|
class InfiniteDataLoader(dataloader.DataLoader):
|
|
""" Dataloader that reuses workers
|
|
|
|
Uses same syntax as vanilla DataLoader
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
|
self.iterator = super().__iter__()
|
|
|
|
def __len__(self):
|
|
return len(self.batch_sampler.sampler)
|
|
|
|
def __iter__(self):
|
|
for _ in range(len(self)):
|
|
yield next(self.iterator)
|
|
|
|
|
|
class _RepeatSampler:
|
|
""" Sampler that repeats forever
|
|
|
|
Args:
|
|
sampler (Sampler)
|
|
"""
|
|
|
|
def __init__(self, sampler):
|
|
self.sampler = sampler
|
|
|
|
def __iter__(self):
|
|
while True:
|
|
yield from iter(self.sampler)
|
|
|
|
|
|
class LoadScreenshots:
|
|
# YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
|
|
def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
|
|
# source = [screen_number left top width height] (pixels)
|
|
check_requirements('mss')
|
|
import mss
|
|
|
|
source, *params = source.split()
|
|
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
|
|
if len(params) == 1:
|
|
self.screen = int(params[0])
|
|
elif len(params) == 4:
|
|
left, top, width, height = (int(x) for x in params)
|
|
elif len(params) == 5:
|
|
self.screen, left, top, width, height = (int(x) for x in params)
|
|
self.img_size = img_size
|
|
self.stride = stride
|
|
self.transforms = transforms
|
|
self.auto = auto
|
|
self.mode = 'stream'
|
|
self.frame = 0
|
|
self.sct = mss.mss()
|
|
|
|
# Parse monitor shape
|
|
monitor = self.sct.monitors[self.screen]
|
|
self.top = monitor["top"] if top is None else (monitor["top"] + top)
|
|
self.left = monitor["left"] if left is None else (monitor["left"] + left)
|
|
self.width = width or monitor["width"]
|
|
self.height = height or monitor["height"]
|
|
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
# mss screen capture: get raw pixels from the screen as np array
|
|
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
|
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
|
|
|
|
if self.transforms:
|
|
im = self.transforms(im0) # transforms
|
|
else:
|
|
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
|
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
im = np.ascontiguousarray(im) # contiguous
|
|
self.frame += 1
|
|
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
|
|
|
|
|
|
class LoadImages:
|
|
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
|
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
|
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
|
|
path = Path(path).read_text().rsplit()
|
|
files = []
|
|
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
|
p = str(Path(p).resolve())
|
|
if '*' in p:
|
|
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
|
elif os.path.isdir(p):
|
|
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
|
|
elif os.path.isfile(p):
|
|
files.append(p) # files
|
|
else:
|
|
raise FileNotFoundError(f'{p} does not exist')
|
|
|
|
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
|
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
|
ni, nv = len(images), len(videos)
|
|
|
|
self.img_size = img_size
|
|
self.stride = stride
|
|
self.files = images + videos
|
|
self.nf = ni + nv # number of files
|
|
self.video_flag = [False] * ni + [True] * nv
|
|
self.mode = 'image'
|
|
self.auto = auto
|
|
self.transforms = transforms # optional
|
|
self.vid_stride = vid_stride # video frame-rate stride
|
|
if any(videos):
|
|
self._new_video(videos[0]) # new video
|
|
else:
|
|
self.cap = None
|
|
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
|
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
|
|
|
def __iter__(self):
|
|
self.count = 0
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.count == self.nf:
|
|
raise StopIteration
|
|
path = self.files[self.count]
|
|
|
|
if self.video_flag[self.count]:
|
|
# Read video
|
|
self.mode = 'video'
|
|
for _ in range(self.vid_stride):
|
|
self.cap.grab()
|
|
ret_val, im0 = self.cap.retrieve()
|
|
while not ret_val:
|
|
self.count += 1
|
|
self.cap.release()
|
|
if self.count == self.nf: # last video
|
|
raise StopIteration
|
|
path = self.files[self.count]
|
|
self._new_video(path)
|
|
ret_val, im0 = self.cap.read()
|
|
|
|
self.frame += 1
|
|
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
|
|
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
|
|
|
else:
|
|
# Read image
|
|
self.count += 1
|
|
im0 = cv2.imread(path) # BGR
|
|
assert im0 is not None, f'Image Not Found {path}'
|
|
s = f'image {self.count}/{self.nf} {path}: '
|
|
|
|
if self.transforms:
|
|
im = self.transforms(im0) # transforms
|
|
else:
|
|
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
|
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
im = np.ascontiguousarray(im) # contiguous
|
|
|
|
return path, im, im0, self.cap, s
|
|
|
|
def _new_video(self, path):
|
|
# Create a new video capture object
|
|
self.frame = 0
|
|
self.cap = cv2.VideoCapture(path)
|
|
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
|
|
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
|
|
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
|
|
|
|
def _cv2_rotate(self, im):
|
|
# Rotate a cv2 video manually
|
|
if self.orientation == 0:
|
|
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
|
|
elif self.orientation == 180:
|
|
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
elif self.orientation == 90:
|
|
return cv2.rotate(im, cv2.ROTATE_180)
|
|
return im
|
|
|
|
def __len__(self):
|
|
return self.nf # number of files
|
|
|
|
|
|
class LoadStreams:
|
|
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
|
def __init__(self, sources='file.streams', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
|
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
|
self.mode = 'stream'
|
|
self.img_size = img_size
|
|
self.stride = stride
|
|
self.vid_stride = vid_stride # video frame-rate stride
|
|
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
|
n = len(sources)
|
|
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
|
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
|
for i, s in enumerate(sources): # index, source
|
|
# Start thread to read frames from video stream
|
|
st = f'{i + 1}/{n}: {s}... '
|
|
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
|
|
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
|
|
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
|
|
import pafy
|
|
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
|
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
|
if s == 0:
|
|
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
|
|
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
|
|
cap = cv2.VideoCapture(s)
|
|
assert cap.isOpened(), f'{st}Failed to open {s}'
|
|
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
|
|
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
|
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
|
|
|
|
_, self.imgs[i] = cap.read() # guarantee first frame
|
|
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
|
|
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
|
self.threads[i].start()
|
|
LOGGER.info('') # newline
|
|
|
|
# check for common shapes
|
|
s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
|
|
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
|
self.auto = auto and self.rect
|
|
self.transforms = transforms # optional
|
|
if not self.rect:
|
|
LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
|
|
|
|
def update(self, i, cap, stream):
|
|
# Read stream `i` frames in daemon thread
|
|
n, f = 0, self.frames[i] # frame number, frame array
|
|
while cap.isOpened() and n < f:
|
|
n += 1
|
|
cap.grab() # .read() = .grab() followed by .retrieve()
|
|
if n % self.vid_stride == 0:
|
|
success, im = cap.retrieve()
|
|
if success:
|
|
self.imgs[i] = im
|
|
else:
|
|
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
|
|
self.imgs[i] = np.zeros_like(self.imgs[i])
|
|
cap.open(stream) # re-open stream if signal was lost
|
|
time.sleep(0.0) # wait time
|
|
|
|
def __iter__(self):
|
|
self.count = -1
|
|
return self
|
|
|
|
def __next__(self):
|
|
self.count += 1
|
|
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
|
cv2.destroyAllWindows()
|
|
raise StopIteration
|
|
|
|
im0 = self.imgs.copy()
|
|
if self.transforms:
|
|
im = np.stack([self.transforms(x) for x in im0]) # transforms
|
|
else:
|
|
im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize
|
|
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
|
im = np.ascontiguousarray(im) # contiguous
|
|
|
|
return self.sources, im, im0, None, ''
|
|
|
|
def __len__(self):
|
|
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
|
|
|
|
|
def img2label_paths(img_paths):
|
|
# Define label paths as a function of image paths
|
|
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
|
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
|
|
|
|
|
class LoadImagesAndLabels(Dataset):
|
|
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
|
|
cache_version = 0.6 # dataset labels *.cache version
|
|
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
|
|
|
def __init__(self,
|
|
path,
|
|
img_size=640,
|
|
batch_size=16,
|
|
augment=False,
|
|
hyp=None,
|
|
rect=False,
|
|
image_weights=False,
|
|
cache_images=False,
|
|
single_cls=False,
|
|
stride=32,
|
|
pad=0.0,
|
|
min_items=0,
|
|
prefix=''):
|
|
self.img_size = img_size
|
|
self.augment = augment
|
|
self.hyp = hyp
|
|
self.image_weights = image_weights
|
|
self.rect = False if image_weights else rect
|
|
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
|
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
|
self.stride = stride
|
|
self.path = path
|
|
self.albumentations = Albumentations(size=img_size) if augment else None
|
|
|
|
try:
|
|
f = [] # image files
|
|
for p in path if isinstance(path, list) else [path]:
|
|
p = Path(p) # os-agnostic
|
|
if p.is_dir(): # dir
|
|
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
|
# f = list(p.rglob('*.*')) # pathlib
|
|
elif p.is_file(): # file
|
|
with open(p) as t:
|
|
t = t.read().strip().splitlines()
|
|
parent = str(p.parent) + os.sep
|
|
f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path
|
|
# f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib)
|
|
else:
|
|
raise FileNotFoundError(f'{prefix}{p} does not exist')
|
|
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
|
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
|
assert self.im_files, f'{prefix}No images found'
|
|
except Exception as e:
|
|
raise FileNotFoundError(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
|
|
|
# Check cache
|
|
self.label_files = img2label_paths(self.im_files) # labels
|
|
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
|
try:
|
|
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
|
assert cache['version'] == self.cache_version # matches current version
|
|
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
|
|
except (FileNotFoundError, AssertionError, AttributeError):
|
|
cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops
|
|
|
|
# Display cache
|
|
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
|
if exists and LOCAL_RANK in {-1, 0}:
|
|
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
|
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
|
|
if cache['msgs']:
|
|
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
|
assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
|
|
|
|
# Read cache
|
|
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
|
labels, shapes, self.segments = zip(*cache.values())
|
|
nl = len(np.concatenate(labels, 0)) # number of labels
|
|
assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
|
|
self.labels = list(labels)
|
|
self.shapes = np.array(shapes)
|
|
self.im_files = list(cache.keys()) # update
|
|
self.label_files = img2label_paths(cache.keys()) # update
|
|
|
|
# Filter images
|
|
if min_items:
|
|
include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
|
|
LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
|
|
self.im_files = [self.im_files[i] for i in include]
|
|
self.label_files = [self.label_files[i] for i in include]
|
|
self.labels = [self.labels[i] for i in include]
|
|
self.segments = [self.segments[i] for i in include]
|
|
self.shapes = self.shapes[include] # wh
|
|
|
|
# Create indices
|
|
n = len(self.shapes) # number of images
|
|
bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
|
|
nb = bi[-1] + 1 # number of batches
|
|
self.batch = bi # batch index of image
|
|
self.n = n
|
|
self.indices = range(n)
|
|
|
|
# Update labels
|
|
include_class = [] # filter labels to include only these classes (optional)
|
|
include_class_array = np.array(include_class).reshape(1, -1)
|
|
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
|
|
if include_class:
|
|
j = (label[:, 0:1] == include_class_array).any(1)
|
|
self.labels[i] = label[j]
|
|
if segment:
|
|
self.segments[i] = segment[j]
|
|
if single_cls: # single-class training, merge all classes into 0
|
|
self.labels[i][:, 0] = 0
|
|
|
|
# Rectangular Training
|
|
if self.rect:
|
|
# Sort by aspect ratio
|
|
s = self.shapes # wh
|
|
ar = s[:, 1] / s[:, 0] # aspect ratio
|
|
irect = ar.argsort()
|
|
self.im_files = [self.im_files[i] for i in irect]
|
|
self.label_files = [self.label_files[i] for i in irect]
|
|
self.labels = [self.labels[i] for i in irect]
|
|
self.segments = [self.segments[i] for i in irect]
|
|
self.shapes = s[irect] # wh
|
|
ar = ar[irect]
|
|
|
|
# Set training image shapes
|
|
shapes = [[1, 1]] * nb
|
|
for i in range(nb):
|
|
ari = ar[bi == i]
|
|
mini, maxi = ari.min(), ari.max()
|
|
if maxi < 1:
|
|
shapes[i] = [maxi, 1]
|
|
elif mini > 1:
|
|
shapes[i] = [1, 1 / mini]
|
|
|
|
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
|
|
|
|
# Cache images into RAM/disk for faster training
|
|
if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
|
|
cache_images = False
|
|
self.ims = [None] * n
|
|
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
|
if cache_images:
|
|
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
|
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
|
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
|
with (Pool if n > 10000 else ThreadPool)(NUM_THREADS) as pool:
|
|
results = pool.imap(fcn, range(n))
|
|
pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
|
|
for i, x in pbar:
|
|
if cache_images == 'disk':
|
|
b += self.npy_files[i].stat().st_size
|
|
else: # 'ram'
|
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
|
b += self.ims[i].nbytes
|
|
pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
|
|
pbar.close()
|
|
|
|
def check_cache_ram(self, safety_margin=0.1, prefix=''):
|
|
# Check image caching requirements vs available memory
|
|
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
|
n = min(self.n, 30) # extrapolate from 30 random images
|
|
for _ in range(n):
|
|
im = cv2.imread(random.choice(self.im_files)) # sample image
|
|
ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
|
|
b += im.nbytes * ratio ** 2
|
|
mem_required = b * self.n / n # GB required to cache dataset into RAM
|
|
mem = psutil.virtual_memory()
|
|
cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question
|
|
if not cache:
|
|
LOGGER.info(f"{prefix}{mem_required / gb:.1f}GB RAM required, "
|
|
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, "
|
|
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
|
|
return cache
|
|
|
|
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
|
# Cache dataset labels, check images and read shapes
|
|
x = {} # dict
|
|
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
|
desc = f"{prefix}Scanning {path.parent / path.stem}..."
|
|
total = len(self.im_files)
|
|
with ThreadPool(NUM_THREADS) as pool:
|
|
results = pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix)))
|
|
pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT)
|
|
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
|
nm += nm_f
|
|
nf += nf_f
|
|
ne += ne_f
|
|
nc += nc_f
|
|
if im_file:
|
|
x[im_file] = [lb, shape, segments]
|
|
if msg:
|
|
msgs.append(msg)
|
|
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
|
pbar.close()
|
|
|
|
if msgs:
|
|
LOGGER.info('\n'.join(msgs))
|
|
if nf == 0:
|
|
LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
|
|
x['hash'] = get_hash(self.label_files + self.im_files)
|
|
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
|
x['msgs'] = msgs # warnings
|
|
x['version'] = self.cache_version # cache version
|
|
if is_dir_writeable(path.parent):
|
|
np.save(str(path), x) # save cache for next time
|
|
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
|
LOGGER.info(f'{prefix}New cache created: {path}')
|
|
else:
|
|
LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable') # not writeable
|
|
return x
|
|
|
|
def __len__(self):
|
|
return len(self.im_files)
|
|
|
|
# def __iter__(self):
|
|
# self.count = -1
|
|
# print('ran dataset iter')
|
|
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
|
# return self
|
|
|
|
def __getitem__(self, index):
|
|
index = self.indices[index] # linear, shuffled, or image_weights
|
|
|
|
hyp = self.hyp
|
|
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
|
if mosaic:
|
|
# Load mosaic
|
|
img, labels = self.load_mosaic(index)
|
|
shapes = None
|
|
|
|
# MixUp augmentation
|
|
if random.random() < hyp['mixup']:
|
|
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
|
|
|
|
else:
|
|
# Load image
|
|
img, (h0, w0), (h, w) = self.load_image(index)
|
|
|
|
# Letterbox
|
|
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
|
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
|
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
|
|
|
labels = self.labels[index].copy()
|
|
if labels.size: # normalized xywh to pixel xyxy format
|
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
|
|
|
if self.augment:
|
|
img, labels = random_perspective(img,
|
|
labels,
|
|
degrees=hyp['degrees'],
|
|
translate=hyp['translate'],
|
|
scale=hyp['scale'],
|
|
shear=hyp['shear'],
|
|
perspective=hyp['perspective'])
|
|
|
|
nl = len(labels) # number of labels
|
|
if nl:
|
|
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
|
|
|
if self.augment:
|
|
# Albumentations
|
|
img, labels = self.albumentations(img, labels)
|
|
nl = len(labels) # update after albumentations
|
|
|
|
# HSV color-space
|
|
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
|
|
|
# Flip up-down
|
|
if random.random() < hyp['flipud']:
|
|
img = np.flipud(img)
|
|
if nl:
|
|
labels[:, 2] = 1 - labels[:, 2]
|
|
|
|
# Flip left-right
|
|
if random.random() < hyp['fliplr']:
|
|
img = np.fliplr(img)
|
|
if nl:
|
|
labels[:, 1] = 1 - labels[:, 1]
|
|
|
|
# Cutouts
|
|
# labels = cutout(img, labels, p=0.5)
|
|
# nl = len(labels) # update after cutout
|
|
|
|
labels_out = torch.zeros((nl, 6))
|
|
if nl:
|
|
labels_out[:, 1:] = torch.from_numpy(labels)
|
|
|
|
# Convert
|
|
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
img = np.ascontiguousarray(img)
|
|
|
|
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
|
|
|
|
def load_image(self, i):
|
|
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
|
|
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
|
|
if im is None: # not cached in RAM
|
|
if fn.exists(): # load npy
|
|
im = np.load(fn)
|
|
else: # read image
|
|
im = cv2.imread(f) # BGR
|
|
assert im is not None, f'Image Not Found {f}'
|
|
h0, w0 = im.shape[:2] # orig hw
|
|
r = self.img_size / max(h0, w0) # ratio
|
|
if r != 1: # if sizes are not equal
|
|
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
|
|
im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp)
|
|
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
|
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
|
|
|
def cache_images_to_disk(self, i):
|
|
# Saves an image as an *.npy file for faster loading
|
|
f = self.npy_files[i]
|
|
if not f.exists():
|
|
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
|
|
|
|
def load_mosaic(self, index):
|
|
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
|
labels4, segments4 = [], []
|
|
s = self.img_size
|
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
|
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
|
random.shuffle(indices)
|
|
for i, index in enumerate(indices):
|
|
# Load image
|
|
img, _, (h, w) = self.load_image(index)
|
|
|
|
# place img in img4
|
|
if i == 0: # top left
|
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
|
elif i == 1: # top right
|
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
|
elif i == 2: # bottom left
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
|
elif i == 3: # bottom right
|
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
|
padw = x1a - x1b
|
|
padh = y1a - y1b
|
|
|
|
# Labels
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
|
if labels.size:
|
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
|
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
|
labels4.append(labels)
|
|
segments4.extend(segments)
|
|
|
|
# Concat/clip labels
|
|
labels4 = np.concatenate(labels4, 0)
|
|
for x in (labels4[:, 1:], *segments4):
|
|
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
|
# img4, labels4 = replicate(img4, labels4) # replicate
|
|
|
|
# Augment
|
|
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
|
img4, labels4 = random_perspective(img4,
|
|
labels4,
|
|
segments4,
|
|
degrees=self.hyp['degrees'],
|
|
translate=self.hyp['translate'],
|
|
scale=self.hyp['scale'],
|
|
shear=self.hyp['shear'],
|
|
perspective=self.hyp['perspective'],
|
|
border=self.mosaic_border) # border to remove
|
|
|
|
return img4, labels4
|
|
|
|
def load_mosaic9(self, index):
|
|
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
|
|
labels9, segments9 = [], []
|
|
s = self.img_size
|
|
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
|
random.shuffle(indices)
|
|
hp, wp = -1, -1 # height, width previous
|
|
for i, index in enumerate(indices):
|
|
# Load image
|
|
img, _, (h, w) = self.load_image(index)
|
|
|
|
# place img in img9
|
|
if i == 0: # center
|
|
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
|
h0, w0 = h, w
|
|
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
|
elif i == 1: # top
|
|
c = s, s - h, s + w, s
|
|
elif i == 2: # top right
|
|
c = s + wp, s - h, s + wp + w, s
|
|
elif i == 3: # right
|
|
c = s + w0, s, s + w0 + w, s + h
|
|
elif i == 4: # bottom right
|
|
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
|
elif i == 5: # bottom
|
|
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
|
elif i == 6: # bottom left
|
|
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
|
elif i == 7: # left
|
|
c = s - w, s + h0 - h, s, s + h0
|
|
elif i == 8: # top left
|
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
|
|
|
padx, pady = c[:2]
|
|
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
|
|
|
# Labels
|
|
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
|
if labels.size:
|
|
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
|
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
|
labels9.append(labels)
|
|
segments9.extend(segments)
|
|
|
|
# Image
|
|
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
|
hp, wp = h, w # height, width previous
|
|
|
|
# Offset
|
|
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
|
|
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
|
|
|
# Concat/clip labels
|
|
labels9 = np.concatenate(labels9, 0)
|
|
labels9[:, [1, 3]] -= xc
|
|
labels9[:, [2, 4]] -= yc
|
|
c = np.array([xc, yc]) # centers
|
|
segments9 = [x - c for x in segments9]
|
|
|
|
for x in (labels9[:, 1:], *segments9):
|
|
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
|
# img9, labels9 = replicate(img9, labels9) # replicate
|
|
|
|
# Augment
|
|
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
|
|
img9, labels9 = random_perspective(img9,
|
|
labels9,
|
|
segments9,
|
|
degrees=self.hyp['degrees'],
|
|
translate=self.hyp['translate'],
|
|
scale=self.hyp['scale'],
|
|
shear=self.hyp['shear'],
|
|
perspective=self.hyp['perspective'],
|
|
border=self.mosaic_border) # border to remove
|
|
|
|
return img9, labels9
|
|
|
|
@staticmethod
|
|
def collate_fn(batch):
|
|
# YOLOv8 collate function, outputs dict
|
|
im, label, path, shapes = zip(*batch) # transposed
|
|
for i, lb in enumerate(label):
|
|
lb[:, 0] = i # add target image index for build_targets()
|
|
batch_idx, cls, bboxes = torch.cat(label, 0).split((1, 1, 4), dim=1)
|
|
return {
|
|
'ori_shape': tuple((x[0] if x else None) for x in shapes),
|
|
'ratio_pad': tuple((x[1] if x else None) for x in shapes),
|
|
'im_file': path,
|
|
'img': torch.stack(im, 0),
|
|
'cls': cls,
|
|
'bboxes': bboxes,
|
|
'batch_idx': batch_idx.view(-1)}
|
|
|
|
@staticmethod
|
|
def collate_fn_old(batch):
|
|
# YOLOv5 original collate function
|
|
im, label, path, shapes = zip(*batch) # transposed
|
|
for i, lb in enumerate(label):
|
|
lb[:, 0] = i # add target image index for build_targets()
|
|
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
|
|
|
|
|
|
# Ancillary functions --------------------------------------------------------------------------------------------------
|
|
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
|
# Flatten a recursive directory by bringing all files to top level
|
|
new_path = Path(f'{str(path)}_flat')
|
|
if os.path.exists(new_path):
|
|
shutil.rmtree(new_path) # delete output folder
|
|
os.makedirs(new_path) # make new output folder
|
|
for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
|
|
shutil.copyfile(file, new_path / Path(file).name)
|
|
|
|
|
|
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
|
|
# Convert detection dataset into classification dataset, with one directory per class
|
|
path = Path(path) # images dir
|
|
shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing
|
|
files = list(path.rglob('*.*'))
|
|
n = len(files) # number of files
|
|
for im_file in tqdm(files, total=n):
|
|
if im_file.suffix[1:] in IMG_FORMATS:
|
|
# image
|
|
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
|
h, w = im.shape[:2]
|
|
|
|
# labels
|
|
lb_file = Path(img2label_paths([str(im_file)])[0])
|
|
if Path(lb_file).exists():
|
|
with open(lb_file) as f:
|
|
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
|
|
|
for j, x in enumerate(lb):
|
|
c = int(x[0]) # class
|
|
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
|
if not f.parent.is_dir():
|
|
f.parent.mkdir(parents=True)
|
|
|
|
b = x[1:] * [w, h, w, h] # box
|
|
# b[2:] = b[2:].max() # rectangle to square
|
|
b[2:] = b[2:] * 1.2 + 3 # pad
|
|
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
|
|
|
|
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
|
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
|
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
|
|
|
|
|
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
|
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
|
Usage: from utils.dataloaders import *; autosplit()
|
|
Arguments
|
|
path: Path to images directory
|
|
weights: Train, val, test weights (list, tuple)
|
|
annotated_only: Only use images with an annotated txt file
|
|
"""
|
|
path = Path(path) # images dir
|
|
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
|
n = len(files) # number of files
|
|
random.seed(0) # for reproducibility
|
|
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
|
|
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
|
for x in txt:
|
|
if (path.parent / x).exists():
|
|
(path.parent / x).unlink() # remove existing
|
|
|
|
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
|
for i, img in tqdm(zip(indices, files), total=n):
|
|
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
|
with open(path.parent / txt[i], 'a') as f:
|
|
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
|
|
|
|
|
|
def verify_image_label(args):
|
|
# Verify one image-label pair
|
|
im_file, lb_file, prefix = args
|
|
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
|
try:
|
|
# verify images
|
|
im = Image.open(im_file)
|
|
im.verify() # PIL verify
|
|
shape = exif_size(im) # image size
|
|
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
|
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
|
if im.format.lower() in ('jpg', 'jpeg'):
|
|
with open(im_file, 'rb') as f:
|
|
f.seek(-2, 2)
|
|
if f.read() != b'\xff\xd9': # corrupt JPEG
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
|
|
|
|
# verify labels
|
|
if os.path.isfile(lb_file):
|
|
nf = 1 # label found
|
|
with open(lb_file) as f:
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
|
if any(len(x) > 6 for x in lb): # is segment
|
|
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
|
lb = np.array(lb, dtype=np.float32)
|
|
nl = len(lb)
|
|
if nl:
|
|
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
|
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
|
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
|
_, i = np.unique(lb, axis=0, return_index=True)
|
|
if len(i) < nl: # duplicate row check
|
|
lb = lb[i] # remove duplicates
|
|
if segments:
|
|
segments = [segments[x] for x in i]
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
|
|
else:
|
|
ne = 1 # label empty
|
|
lb = np.zeros((0, 5), dtype=np.float32)
|
|
else:
|
|
nm = 1 # label missing
|
|
lb = np.zeros((0, 5), dtype=np.float32)
|
|
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
|
except Exception as e:
|
|
nc = 1
|
|
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
|
|
return [None, None, None, None, nm, nf, ne, nc, msg]
|
|
|
|
|
|
class HUBDatasetStats():
|
|
""" Class for generating HUB dataset JSON and `-hub` dataset directory
|
|
|
|
Arguments
|
|
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
|
autodownload: Attempt to download dataset if not found locally
|
|
|
|
Usage
|
|
from utils.dataloaders import HUBDatasetStats
|
|
stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1
|
|
stats = HUBDatasetStats('path/to/coco128.zip') # usage 2
|
|
stats.get_json(save=False)
|
|
stats.process_images()
|
|
"""
|
|
|
|
def __init__(self, path='coco128.yaml', autodownload=False):
|
|
# Initialize class
|
|
zipped, data_dir, yaml_path = self._unzip(Path(path))
|
|
try:
|
|
with open(check_yaml(yaml_path), errors='ignore') as f:
|
|
data = yaml.safe_load(f) # data dict
|
|
if zipped:
|
|
data['path'] = data_dir
|
|
except Exception as e:
|
|
raise Exception("error/HUB/dataset_stats/yaml_load") from e
|
|
|
|
check_dataset(data, autodownload) # download dataset if missing
|
|
self.hub_dir = Path(data['path'] + '-hub')
|
|
self.im_dir = self.hub_dir / 'images'
|
|
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
|
|
self.stats = {'nc': data['nc'], 'names': list(data['names'].values())} # statistics dictionary
|
|
self.data = data
|
|
|
|
@staticmethod
|
|
def _find_yaml(dir):
|
|
# Return data.yaml file
|
|
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
|
|
assert files, f'No *.yaml file found in {dir}'
|
|
if len(files) > 1:
|
|
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
|
|
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
|
|
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
|
|
return files[0]
|
|
|
|
def _unzip(self, path):
|
|
# Unzip data.zip
|
|
if not str(path).endswith('.zip'): # path is data.yaml
|
|
return False, None, path
|
|
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
|
unzip_file(path, path=path.parent)
|
|
dir = path.with_suffix('') # dataset directory == zip name
|
|
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
|
|
return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path
|
|
|
|
def _hub_ops(self, f, max_dim=1920):
|
|
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
|
|
f_new = self.im_dir / Path(f).name # dataset-hub image filename
|
|
try: # use PIL
|
|
im = Image.open(f)
|
|
r = max_dim / max(im.height, im.width) # ratio
|
|
if r < 1.0: # image too large
|
|
im = im.resize((int(im.width * r), int(im.height * r)))
|
|
im.save(f_new, 'JPEG', quality=50, optimize=True) # save
|
|
except Exception as e: # use OpenCV
|
|
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
|
|
im = cv2.imread(f)
|
|
im_height, im_width = im.shape[:2]
|
|
r = max_dim / max(im_height, im_width) # ratio
|
|
if r < 1.0: # image too large
|
|
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
|
cv2.imwrite(str(f_new), im)
|
|
|
|
def get_json(self, save=False, verbose=False):
|
|
# Return dataset JSON for Ultralytics HUB
|
|
def _round(labels):
|
|
# Update labels to integer class and 6 decimal place floats
|
|
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
|
|
|
for split in 'train', 'val', 'test':
|
|
if self.data.get(split) is None:
|
|
self.stats[split] = None # i.e. no test set
|
|
continue
|
|
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
|
x = np.array([
|
|
np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
|
|
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80)
|
|
self.stats[split] = {
|
|
'instance_stats': {
|
|
'total': int(x.sum()),
|
|
'per_class': x.sum(0).tolist()},
|
|
'image_stats': {
|
|
'total': dataset.n,
|
|
'unlabelled': int(np.all(x == 0, 1).sum()),
|
|
'per_class': (x > 0).sum(0).tolist()},
|
|
'labels': [{
|
|
str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
|
|
|
|
# Save, print and return
|
|
if save:
|
|
stats_path = self.hub_dir / 'stats.json'
|
|
print(f'Saving {stats_path.resolve()}...')
|
|
with open(stats_path, 'w') as f:
|
|
json.dump(self.stats, f) # save stats.json
|
|
if verbose:
|
|
print(json.dumps(self.stats, indent=2, sort_keys=False))
|
|
return self.stats
|
|
|
|
def process_images(self):
|
|
# Compress images for Ultralytics HUB
|
|
for split in 'train', 'val', 'test':
|
|
if self.data.get(split) is None:
|
|
continue
|
|
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
|
desc = f'{split} images'
|
|
total = dataset.n
|
|
with (Pool if total > 10000 else ThreadPool)(NUM_THREADS) as pool:
|
|
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=total, desc=desc):
|
|
pass
|
|
print(f'Done. All images saved to {self.im_dir}')
|
|
return self.im_dir
|
|
|
|
|
|
# Classification dataloaders -------------------------------------------------------------------------------------------
|
|
class ClassificationDataset(torchvision.datasets.ImageFolder):
|
|
"""
|
|
YOLOv5 Classification Dataset.
|
|
Arguments
|
|
root: Dataset path
|
|
transform: torchvision transforms, used by default
|
|
album_transform: Albumentations transforms, used if installed
|
|
"""
|
|
|
|
def __init__(self, root, augment, imgsz, cache=False):
|
|
super().__init__(root=root)
|
|
self.torch_transforms = classify_transforms(imgsz)
|
|
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
|
|
self.cache_ram = cache is True or cache == 'ram'
|
|
self.cache_disk = cache == 'disk'
|
|
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
|
|
|
|
def __getitem__(self, i):
|
|
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
|
|
if self.cache_ram and im is None:
|
|
im = self.samples[i][3] = cv2.imread(f)
|
|
elif self.cache_disk:
|
|
if not fn.exists(): # load npy
|
|
np.save(fn.as_posix(), cv2.imread(f))
|
|
im = np.load(fn)
|
|
else: # read image
|
|
im = cv2.imread(f) # BGR
|
|
if self.album_transforms:
|
|
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
|
|
else:
|
|
sample = self.torch_transforms(im)
|
|
return sample, j
|
|
|
|
|
|
def create_classification_dataloader(path,
|
|
imgsz=224,
|
|
batch_size=16,
|
|
augment=True,
|
|
cache=False,
|
|
rank=-1,
|
|
workers=8,
|
|
shuffle=True):
|
|
# Returns Dataloader object to be used with YOLOv5 Classifier
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
|
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
|
batch_size = min(batch_size, len(dataset))
|
|
nd = torch.cuda.device_count()
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
generator = torch.Generator()
|
|
generator.manual_seed(6148914691236517205 + RANK)
|
|
return InfiniteDataLoader(dataset,
|
|
batch_size=batch_size,
|
|
shuffle=shuffle and sampler is None,
|
|
num_workers=nw,
|
|
sampler=sampler,
|
|
pin_memory=PIN_MEMORY,
|
|
worker_init_fn=seed_worker,
|
|
generator=generator) # or DataLoader(persistent_workers=True)
|