You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

106 lines
2.9 KiB

import torch
from ultralytics import YOLO
def test_model_init():
model = YOLO("yolov8n.yaml")
model.info()
try:
YOLO()
except Exception:
print("Successfully caught constructor assert!")
raise Exception("constructor error didn't occur")
def test_model_forward():
model = YOLO("yolov8n.yaml")
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
model.forward(img)
model(img)
def test_model_info():
model = YOLO("yolov8n.yaml")
model.info()
model = model.load("best.pt")
model.info(verbose=True)
def test_model_fuse():
model = YOLO("yolov8n.yaml")
model.fuse()
model.load("best.pt")
model.fuse()
def test_visualize_preds():
model = YOLO("best.pt")
model.predict(source="ultralytics/assets")
def test_val():
model = YOLO("best.pt")
model.val(data="coco128.yaml", imgsz=32)
def test_model_resume():
model = YOLO("yolov8n.yaml")
model.train(epochs=1, imgsz=32, data="coco128.yaml")
try:
model.resume(task="detect")
except AssertionError:
print("Successfully caught resume assert!")
def test_model_train_pretrained():
model = YOLO("best.pt")
model.train(data="coco128.yaml", epochs=1, imgsz=32)
model = model.new("yolov8n.yaml")
model.train(data="coco128.yaml", epochs=1, imgsz=32)
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
model(img)
def test_exports():
"""
Format Argument Suffix CPU GPU
0 PyTorch - .pt True True
1 TorchScript torchscript .torchscript True True
2 ONNX onnx .onnx True True
3 OpenVINO openvino _openvino_model True False
4 TensorRT engine .engine False True
5 CoreML coreml .mlmodel True False
6 TensorFlow SavedModel saved_model _saved_model True True
7 TensorFlow GraphDef pb .pb True True
8 TensorFlow Lite tflite .tflite True False
9 TensorFlow Edge TPU edgetpu _edgetpu.tflite False False
10 TensorFlow.js tfjs _web_model False False
11 PaddlePaddle paddle _paddle_model True True
"""
from ultralytics import YOLO
from ultralytics.yolo.engine.exporter import export_formats
print(export_formats())
model = YOLO("yolov8n.yaml")
model.export(format='torchscript')
model.export(format='onnx')
model.export(format='openvino')
model.export(format='coreml')
model.export(format='paddle')
def test():
test_model_forward()
test_model_info()
test_model_fuse()
test_visualize_preds()
test_val()
test_model_resume()
test_model_train_pretrained()
if __name__ == "__main__":
test()