You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
295 lines
13 KiB
295 lines
13 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
import contextlib
|
|
import hashlib
|
|
import os
|
|
import subprocess
|
|
import time
|
|
from pathlib import Path
|
|
from tarfile import is_tarfile
|
|
from zipfile import is_zipfile
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from PIL import ExifTags, Image, ImageOps
|
|
|
|
from ultralytics.yolo.utils import DATASETS_DIR, LOGGER, ROOT, colorstr, emojis, yaml_load
|
|
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
|
|
from ultralytics.yolo.utils.downloads import download, safe_download
|
|
from ultralytics.yolo.utils.files import unzip_file
|
|
from ultralytics.yolo.utils.ops import segments2boxes
|
|
|
|
HELP_URL = "See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data"
|
|
IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # include image suffixes
|
|
VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" # include video suffixes
|
|
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
|
RANK = int(os.getenv('RANK', -1))
|
|
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders
|
|
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
|
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
|
|
|
# Get orientation exif tag
|
|
for orientation in ExifTags.TAGS.keys():
|
|
if ExifTags.TAGS[orientation] == "Orientation":
|
|
break
|
|
|
|
|
|
def img2label_paths(img_paths):
|
|
# Define label paths as a function of image paths
|
|
sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings
|
|
return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths]
|
|
|
|
|
|
def get_hash(paths):
|
|
# Returns a single hash value of a list of paths (files or dirs)
|
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
|
h = hashlib.sha256(str(size).encode()) # hash sizes
|
|
h.update("".join(paths).encode()) # hash paths
|
|
return h.hexdigest() # return hash
|
|
|
|
|
|
def exif_size(img):
|
|
# Returns exif-corrected PIL size
|
|
s = img.size # (width, height)
|
|
with contextlib.suppress(Exception):
|
|
rotation = dict(img._getexif().items())[orientation]
|
|
if rotation in [6, 8]: # rotation 270 or 90
|
|
s = (s[1], s[0])
|
|
return s
|
|
|
|
|
|
def verify_image_label(args):
|
|
# Verify one image-label pair
|
|
im_file, lb_file, prefix, keypoint, num_cls = args
|
|
# number (missing, found, empty, corrupt), message, segments, keypoints
|
|
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None
|
|
try:
|
|
# verify images
|
|
im = Image.open(im_file)
|
|
im.verify() # PIL verify
|
|
shape = exif_size(im) # image size
|
|
shape = (shape[1], shape[0]) # hw
|
|
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
|
|
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
|
|
if im.format.lower() in ("jpg", "jpeg"):
|
|
with open(im_file, "rb") as f:
|
|
f.seek(-2, 2)
|
|
if f.read() != b"\xff\xd9": # corrupt JPEG
|
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100)
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved"
|
|
|
|
# verify labels
|
|
if os.path.isfile(lb_file):
|
|
nf = 1 # label found
|
|
with open(lb_file) as f:
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
|
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment
|
|
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
|
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
|
lb = np.array(lb, dtype=np.float32)
|
|
nl = len(lb)
|
|
if nl:
|
|
if keypoint:
|
|
assert lb.shape[1] == 56, "labels require 56 columns each"
|
|
assert (lb[:, 5::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
|
|
assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
|
|
kpts = np.zeros((lb.shape[0], 39))
|
|
for i in range(len(lb)):
|
|
kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, 3)) # remove occlusion param from GT
|
|
kpts[i] = np.hstack((lb[i, :5], kpt))
|
|
lb = kpts
|
|
assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter"
|
|
else:
|
|
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
|
|
assert (lb[:, 1:] <= 1).all(), \
|
|
f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
|
|
# All labels
|
|
max_cls = int(lb[:, 0].max()) # max label count
|
|
assert max_cls <= num_cls, \
|
|
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \
|
|
f'Possible class labels are 0-{num_cls - 1}'
|
|
assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}"
|
|
_, i = np.unique(lb, axis=0, return_index=True)
|
|
if len(i) < nl: # duplicate row check
|
|
lb = lb[i] # remove duplicates
|
|
if segments:
|
|
segments = [segments[x] for x in i]
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed"
|
|
else:
|
|
ne = 1 # label empty
|
|
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
|
|
else:
|
|
nm = 1 # label missing
|
|
lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
|
|
if keypoint:
|
|
keypoints = lb[:, 5:].reshape(-1, 17, 2)
|
|
lb = lb[:, :5]
|
|
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
|
|
except Exception as e:
|
|
nc = 1
|
|
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}"
|
|
return [None, None, None, None, None, nm, nf, ne, nc, msg]
|
|
|
|
|
|
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
|
|
"""
|
|
Args:
|
|
imgsz (tuple): The image size.
|
|
polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2).
|
|
color (int): color
|
|
downsample_ratio (int): downsample ratio
|
|
"""
|
|
mask = np.zeros(imgsz, dtype=np.uint8)
|
|
polygons = np.asarray(polygons)
|
|
polygons = polygons.astype(np.int32)
|
|
shape = polygons.shape
|
|
polygons = polygons.reshape(shape[0], -1, 2)
|
|
cv2.fillPoly(mask, polygons, color=color)
|
|
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
|
|
# NOTE: fillPoly firstly then resize is trying the keep the same way
|
|
# of loss calculation when mask-ratio=1.
|
|
mask = cv2.resize(mask, (nw, nh))
|
|
return mask
|
|
|
|
|
|
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
|
|
"""
|
|
Args:
|
|
imgsz (tuple): The image size.
|
|
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0)
|
|
color (int): color
|
|
downsample_ratio (int): downsample ratio
|
|
"""
|
|
masks = []
|
|
for si in range(len(polygons)):
|
|
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio)
|
|
masks.append(mask)
|
|
return np.array(masks)
|
|
|
|
|
|
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
|
|
"""Return a (640, 640) overlap mask."""
|
|
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio),
|
|
dtype=np.int32 if len(segments) > 255 else np.uint8)
|
|
areas = []
|
|
ms = []
|
|
for si in range(len(segments)):
|
|
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1)
|
|
ms.append(mask)
|
|
areas.append(mask.sum())
|
|
areas = np.asarray(areas)
|
|
index = np.argsort(-areas)
|
|
ms = np.array(ms)[index]
|
|
for i in range(len(segments)):
|
|
mask = ms[i] * (i + 1)
|
|
masks = masks + mask
|
|
masks = np.clip(masks, a_min=0, a_max=i + 1)
|
|
return masks, index
|
|
|
|
|
|
def check_det_dataset(dataset, autodownload=True):
|
|
# Download, check and/or unzip dataset if not found locally
|
|
data = check_file(dataset)
|
|
|
|
# Download (optional)
|
|
extract_dir = ''
|
|
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
|
|
new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False)
|
|
data = next((DATASETS_DIR / new_dir).rglob('*.yaml'))
|
|
extract_dir, autodownload = data.parent, False
|
|
|
|
# Read yaml (optional)
|
|
if isinstance(data, (str, Path)):
|
|
data = yaml_load(data, append_filename=True) # dictionary
|
|
|
|
# Checks
|
|
for k in 'train', 'val', 'names':
|
|
if k not in data:
|
|
raise SyntaxError(
|
|
emojis(f"{dataset} '{k}:' key missing ❌.\n"
|
|
f"'train', 'val' and 'names' are required in data.yaml files."))
|
|
if isinstance(data['names'], (list, tuple)): # old array format
|
|
data['names'] = dict(enumerate(data['names'])) # convert to dict
|
|
data['nc'] = len(data['names'])
|
|
|
|
# Resolve paths
|
|
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root
|
|
|
|
if not path.is_absolute():
|
|
path = (DATASETS_DIR / path).resolve()
|
|
data['path'] = path # download scripts
|
|
for k in 'train', 'val', 'test':
|
|
if data.get(k): # prepend path
|
|
if isinstance(data[k], str):
|
|
x = (path / data[k]).resolve()
|
|
if not x.exists() and data[k].startswith('../'):
|
|
x = (path / data[k][3:]).resolve()
|
|
data[k] = str(x)
|
|
else:
|
|
data[k] = [str((path / x).resolve()) for x in data[k]]
|
|
|
|
# Parse yaml
|
|
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
|
if val:
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
|
if not all(x.exists() for x in val):
|
|
msg = f"\nDataset '{dataset}' not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()]
|
|
if s and autodownload:
|
|
LOGGER.warning(msg)
|
|
else:
|
|
raise FileNotFoundError(msg)
|
|
t = time.time()
|
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
|
safe_download(url=s, dir=DATASETS_DIR, delete=True)
|
|
r = None # success
|
|
elif s.startswith('bash '): # bash script
|
|
LOGGER.info(f'Running {s} ...')
|
|
r = os.system(s)
|
|
else: # python script
|
|
r = exec(s, {'yaml': data}) # return None
|
|
dt = f'({round(time.time() - t, 1)}s)'
|
|
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
|
|
LOGGER.info(f"Dataset download {s}\n")
|
|
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') # download fonts
|
|
|
|
return data # dictionary
|
|
|
|
|
|
def check_cls_dataset(dataset: str):
|
|
"""
|
|
Check a classification dataset such as Imagenet.
|
|
|
|
Copy code
|
|
This function takes a `dataset` name as input and returns a dictionary containing information about the dataset.
|
|
If the dataset is not found, it attempts to download the dataset from the internet and save it to the local file system.
|
|
|
|
Args:
|
|
dataset (str): Name of the dataset.
|
|
|
|
Returns:
|
|
data (dict): A dictionary containing the following keys and values:
|
|
'train': Path object for the directory containing the training set of the dataset
|
|
'val': Path object for the directory containing the validation set of the dataset
|
|
'nc': Number of classes in the dataset
|
|
'names': List of class names in the dataset
|
|
"""
|
|
data_dir = (DATASETS_DIR / dataset).resolve()
|
|
if not data_dir.is_dir():
|
|
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
|
|
t = time.time()
|
|
if dataset == 'imagenet':
|
|
subprocess.run(f"bash {ROOT / 'yolo/data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
|
else:
|
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
|
|
download(url, dir=data_dir.parent)
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
|
LOGGER.info(s)
|
|
train_set = data_dir / "train"
|
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
|
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
|
|
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list
|
|
names = dict(enumerate(sorted(names)))
|
|
return {"train": train_set, "val": test_set, "nc": nc, "names": names}
|