You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
4.4 KiB
111 lines
4.4 KiB
import hydra
|
|
import torch
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
from ultralytics.yolo.utils import ops
|
|
from ultralytics.yolo.utils.plotting import colors, save_one_box
|
|
|
|
from ..detect.predict import DetectionPredictor
|
|
|
|
|
|
class SegmentationPredictor(DetectionPredictor):
|
|
|
|
def postprocess(self, preds, img, orig_img):
|
|
masks = []
|
|
# TODO: filter by classes
|
|
p = ops.non_max_suppression(preds[0],
|
|
self.args.conf_thres,
|
|
self.args.iou_thres,
|
|
agnostic=self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
nm=32)
|
|
proto = preds[1][-1]
|
|
for i, pred in enumerate(p):
|
|
shape = orig_img[i].shape if self.webcam else orig_img.shape
|
|
if not len(pred):
|
|
continue
|
|
if self.args.retina_masks:
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
|
masks.append(ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])) # HWC
|
|
else:
|
|
masks.append(ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)) # HWC
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
|
|
|
return (p, masks)
|
|
|
|
def write_results(self, idx, preds, batch):
|
|
p, im, im0 = batch
|
|
log_string = ""
|
|
if len(im.shape) == 3:
|
|
im = im[None] # expand for batch dim
|
|
self.seen += 1
|
|
if self.webcam: # batch_size >= 1
|
|
log_string += f'{idx}: '
|
|
frame = self.dataset.count
|
|
else:
|
|
frame = getattr(self.dataset, 'frame', 0)
|
|
|
|
self.data_path = p
|
|
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
|
log_string += '%gx%g ' % im.shape[2:] # print string
|
|
self.annotator = self.get_annotator(im0)
|
|
|
|
preds, masks = preds
|
|
det = preds[idx]
|
|
if len(det) == 0:
|
|
return log_string
|
|
# Segments
|
|
mask = masks[idx]
|
|
if self.args.save_txt:
|
|
segments = [
|
|
ops.scale_segments(im0.shape if self.arg.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
|
|
for x in reversed(ops.masks2segments(mask))]
|
|
|
|
# Print results
|
|
for c in det[:, 5].unique():
|
|
n = (det[:, 5] == c).sum() # detections per class
|
|
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
|
|
|
# Mask plotting
|
|
self.annotator.masks(
|
|
mask,
|
|
colors=[colors(x, True) for x in det[:, 5]],
|
|
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
|
|
255 if self.args.retina_masks else im[idx])
|
|
|
|
# Write results
|
|
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
|
|
if self.args.save_txt: # Write to file
|
|
seg = segments[j].reshape(-1) # (n,2) to (n*2)
|
|
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
|
|
with open(f'{self.txt_path}.txt', 'a') as f:
|
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
|
|
|
if self.save_img or self.args.save_crop or self.args.view_img:
|
|
c = int(cls) # integer class
|
|
label = None if self.args.hide_labels else (
|
|
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
|
|
self.annotator.box_label(xyxy, label, color=colors(c, True))
|
|
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
|
|
if self.args.save_crop:
|
|
imc = im0.copy()
|
|
save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / f'{p.stem}.jpg', BGR=True)
|
|
|
|
return log_string
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
def predict(cfg):
|
|
cfg.model = cfg.model or "n.pt"
|
|
sz = cfg.imgsz
|
|
if type(sz) != int: # received listConfig
|
|
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
|
else:
|
|
cfg.imgsz = [sz, sz]
|
|
predictor = SegmentationPredictor(cfg)
|
|
predictor()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
predict()
|