You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

315 lines
14 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ yolo mode=predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import platform
from pathlib import Path
import cv2
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data import load_inference_source
from ultralytics.yolo.data.augment import classify_transforms
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
STREAM_WARNING = """
WARNING ⚠️ stream/video/webcam/dir predict source will accumulate results in RAM unless `stream=True` is passed,
causing potential out-of-memory errors for large sources or long-running streams/videos.
Usage:
results = model(source=..., stream=True) # generator of Results objects
for r in results:
boxes = r.boxes # Boxes object for bbox outputs
masks = r.masks # Masks object for segment masks outputs
probs = r.probs # Class probabilities for classification outputs
"""
class BasePredictor:
"""
BasePredictor
A base class for creating predictors.
Attributes:
args (SimpleNamespace): Configuration for the predictor.
save_dir (Path): Directory to save results.
done_setup (bool): Whether the predictor has finished setup.
model (nn.Module): Model used for prediction.
data (dict): Data configuration.
device (torch.device): Device used for prediction.
dataset (Dataset): Dataset used for prediction.
vid_path (str): Path to video file.
vid_writer (cv2.VideoWriter): Video writer for saving video output.
annotator (Annotator): Annotator used for prediction.
data_path (str): Path to data.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""
Initializes the BasePredictor class.
Args:
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = self.args.name or f'{self.args.mode}'
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
if self.args.conf is None:
self.args.conf = 0.25 # default conf=0.25
self.done_warmup = False
if self.args.show:
self.args.show = check_imshow(warn=True)
# Usable if setup is done
self.model = None
self.data = self.args.data # data_dict
self.imgsz = None
self.device = None
self.dataset = None
self.vid_path, self.vid_writer = None, None
self.plotted_img = None
self.data_path = None
self.source_type = None
self.batch = None
self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self)
def preprocess(self, img):
pass
def write_results(self, idx, results, batch):
p, im, _ = batch
log_string = ''
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
result = results[idx]
log_string += result.verbose()
if self.args.save or self.args.show: # Add bbox to image
plot_args = dict(line_width=self.args.line_thickness, boxes=self.args.boxes)
if not self.args.retina_masks:
plot_args['im_gpu'] = im[idx]
self.plotted_img = result.plot(**plot_args)
# write
if self.args.save_txt:
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / 'crops', file_name=self.data_path.stem)
return log_string
def postprocess(self, preds, img, orig_img):
return preds
def __call__(self, source=None, model=None, stream=False):
self.stream = stream
if stream:
return self.stream_inference(source, model)
else:
return list(self.stream_inference(source, model)) # merge list of Result into one
def predict_cli(self, source=None, model=None):
# Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode
gen = self.stream_inference(source, model)
for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
pass
def setup_source(self, source):
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
if self.args.task == 'classify':
transforms = getattr(self.model.model, 'transforms', classify_transforms(self.imgsz[0]))
else: # predict, segment
transforms = None
self.dataset = load_inference_source(source=source,
transforms=transforms,
imgsz=self.imgsz,
vid_stride=self.args.vid_stride,
stride=self.model.stride,
auto=self.model.pt)
self.source_type = self.dataset.source_type
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
len(self.dataset) > 1000 or # images
any(getattr(self.dataset, 'video_flag', [False]))): # videos
LOGGER.warning(STREAM_WARNING)
self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs
@smart_inference_mode()
def stream_inference(self, source=None, model=None):
if self.args.verbose:
LOGGER.info('')
# setup model
if not self.model:
self.setup_model(model)
# setup source every time predict is called
self.setup_source(source if source is not None else self.args.source)
# check if save_dir/ label file exists
if self.args.save or self.args.save_txt:
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# warmup model
if not self.done_warmup:
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
self.done_warmup = True
self.seen, self.windows, self.dt, self.batch = 0, [], (ops.Profile(), ops.Profile(), ops.Profile()), None
self.run_callbacks('on_predict_start')
for batch in self.dataset:
self.run_callbacks('on_predict_batch_start')
self.batch = batch
path, im, im0s, vid_cap, s = batch
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
# preprocess
with self.dt[0]:
im = self.preprocess(im)
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# inference
with self.dt[1]:
preds = self.model(im, augment=self.args.augment, visualize=visualize)
# postprocess
with self.dt[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks('on_predict_postprocess_end')
# visualize, save, write results
n = len(im)
for i in range(n):
self.results[i].speed = {
'preprocess': self.dt[0].dt * 1E3 / n,
'inference': self.dt[1].dt * 1E3 / n,
'postprocess': self.dt[2].dt * 1E3 / n}
if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor
continue
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img \
else (path, im0s.copy())
p = Path(p)
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s += self.write_results(i, self.results, (p, im, im0))
if self.args.show and self.plotted_img is not None:
self.show(p)
if self.args.save and self.plotted_img is not None:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
self.run_callbacks('on_predict_batch_end')
yield from self.results
# Print time (inference-only)
if self.args.verbose:
LOGGER.info(f'{s}{self.dt[1].dt * 1E3:.1f}ms')
# Release assets
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
self.vid_writer[-1].release() # release final video writer
# Print results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
f'{(1, 3, *self.imgsz)}' % t)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks('on_predict_end')
def setup_model(self, model, verbose=True):
device = select_device(self.args.device, verbose=verbose)
model = model or self.args.model
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
self.model = AutoBackend(model,
device=device,
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
fuse=True,
verbose=verbose)
self.device = device
self.model.eval()
def show(self, p):
im0 = self.plotted_img
if platform.system() == 'Linux' and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(500 if self.batch[4].startswith('image') else 1) # 1 millisecond
def save_preds(self, vid_cap, idx, save_path):
im0 = self.plotted_img
# save imgs
if self.dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if self.vid_path[idx] != save_path: # new video
self.vid_path[idx] = save_path
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
self.vid_writer[idx].release() # release previous video writer
if vid_cap: # video
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
self.vid_writer[idx].write(im0)
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)
def add_callback(self, event: str, func):
"""
Add callback
"""
self.callbacks[event].append(func)